Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10018
Cited By
Momentum-Based Variance Reduction in Non-Convex SGD
24 May 2019
Ashok Cutkosky
Francesco Orabona
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Momentum-Based Variance Reduction in Non-Convex SGD"
50 / 94 papers shown
Title
Second-Order Convergence in Private Stochastic Non-Convex Optimization
Youming Tao
Zuyuan Zhang
Dongxiao Yu
Xiuzhen Cheng
Falko Dressler
Di Wang
7
0
0
21 May 2025
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Youran Dong
Junfeng Yang
Wei-Ting Yao
Jin Zhang
207
0
0
04 May 2025
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
105
0
0
21 Feb 2025
FedTLU: Federated Learning with Targeted Layer Updates
Jong-Ik Park
Carlee Joe-Wong
FedML
89
0
0
28 Jan 2025
Weight for Robustness: A Comprehensive Approach towards Optimal Fault-Tolerant Asynchronous ML
T. Dahan
Kfir Y. Levy
72
0
0
17 Jan 2025
On the Performance Analysis of Momentum Method: A Frequency Domain Perspective
Xianliang Li
Jun Luo
Zhiwei Zheng
Hanxiao Wang
Li Luo
Lingkun Wen
Linlong Wu
Sheng Xu
74
0
0
29 Nov 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction
Xinwei Zhang
Zhiqi Bu
Borja Balle
Mingyi Hong
Meisam Razaviyayn
Vahab Mirrokni
78
2
0
04 Oct 2024
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
52
2
0
28 Sep 2024
On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy
Saber Malekmohammadi
G. Farnadi
32
2
0
26 Sep 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
21
5
0
31 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
40
0
0
19 Jul 2024
Private Zeroth-Order Nonsmooth Nonconvex Optimization
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
40
4
0
27 Jun 2024
Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum
H. Cai
Sulaiman A. Alghunaim
Ali H.Sayed
52
1
0
18 Jun 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
43
4
0
16 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
42
3
0
02 May 2024
Order-Optimal Regret with Novel Policy Gradient Approaches in Infinite-Horizon Average Reward MDPs
Swetha Ganesh
Washim Uddin Mondal
Vaneet Aggarwal
49
3
0
02 Apr 2024
Global Convergence Guarantees for Federated Policy Gradient Methods with Adversaries
Swetha Ganesh
Jiayu Chen
Gugan Thoppe
Vaneet Aggarwal
FedML
68
1
0
15 Mar 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
39
6
0
05 Mar 2024
Flora: Low-Rank Adapters Are Secretly Gradient Compressors
Yongchang Hao
Yanshuai Cao
Lili Mou
16
41
0
05 Feb 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
33
7
0
17 Jan 2024
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
45
0
0
21 Nov 2023
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
36
1
0
09 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
28
1
0
24 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
20
8
0
14 Jul 2023
Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality
Ziyang Wei
Wanrong Zhu
Wei Biao Wu
27
3
0
13 Jul 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
34
0
0
02 Jun 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
32
18
0
07 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
28
7
0
07 Mar 2023
A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic Composite Optimization
Tesi Xiao
Xuxing Chen
Krishnakumar Balasubramanian
Saeed Ghadimi
36
10
0
20 Feb 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
27
13
0
20 Feb 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
34
12
0
14 Feb 2023
Near-Optimal Non-Convex Stochastic Optimization under Generalized Smoothness
Zijian Liu
Srikanth Jagabathula
Zhengyuan Zhou
24
5
0
13 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
32
1
0
28 Jan 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
31
15
0
16 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
42
6
0
09 Jan 2023
Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation Constrained Optimization
Zichong Li
Pinzhuo Chen
Sijia Liu
Songtao Lu
Yangyang Xu
35
17
0
19 Dec 2022
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
34
0
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
36
14
0
09 Dec 2022
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems
Hongchang Gao
24
16
0
06 Dec 2022
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
73
5
0
05 Dec 2022
Adaptive Stochastic Optimisation of Nonconvex Composite Objectives
Weijia Shao
F. Sivrikaya
S. Albayrak
21
0
0
21 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
24
15
0
03 Nov 2022
Fast Adaptive Federated Bilevel Optimization
Feihu Huang
FedML
22
7
0
02 Nov 2022
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang
Chengyue Gong
Xingchao Liu
RALM
51
6
0
02 Nov 2022
Momentum Aggregation for Private Non-convex ERM
Hoang Tran
Ashok Cutkosky
26
14
0
12 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
40
2
0
12 Oct 2022
1
2
Next