ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.09033
16
21

Spatial Sampling Network for Fast Scene Understanding

22 May 2019
Davide Mazzini
Raimondo Schettini
    3DPC
    SSeg
ArXivPDFHTML
Abstract

We propose a network architecture to perform efficient scene understanding. This work presents three main novelties: the first is an Improved Guided Upsampling Module that can replace in toto the decoder part in common semantic segmentation networks. Our second contribution is the introduction of a new module based on spatial sampling to perform Instance Segmentation. It provides a very fast instance segmentation, needing only thresholding as post-processing step at inference time. Finally, we propose a novel efficient network design that includes the new modules and test it against different datasets for outdoor scene understanding. To our knowledge, our network is one of the themost efficient architectures for scene understanding published to date, furthermore being 8.6% more accurate than the fastest competitor on semantic segmentation and almost five times faster than the most efficient network for instance segmentation.

View on arXiv
Comments on this paper