ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.08737
  4. Cited By
On the marginal likelihood and cross-validation

On the marginal likelihood and cross-validation

21 May 2019
Edwin Fong
Chris Holmes
    UQCV
ArXivPDFHTML

Papers citing "On the marginal likelihood and cross-validation"

16 / 16 papers shown
Title
Spectral information criterion for automatic elbow detection
Spectral information criterion for automatic elbow detection
Luca Martino
Roberto San Millán-Castillo
E. Morgado
25
9
0
17 Aug 2023
In-Context Learning Learns Label Relationships but Is Not Conventional
  Learning
In-Context Learning Learns Label Relationships but Is Not Conventional Learning
Jannik Kossen
Y. Gal
Tom Rainforth
32
27
0
23 Jul 2023
The Interpolating Information Criterion for Overparameterized Models
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
16
7
0
15 Jul 2023
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
70
24
0
01 Sep 2022
Scale invariant process regression: Towards Bayesian ML with minimal
  assumptions
Scale invariant process regression: Towards Bayesian ML with minimal assumptions
Matthias Wieler
8
0
0
22 Aug 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
17
1
0
10 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
24
44
0
22 Feb 2022
Efficient computation of the volume of a polytope in high-dimensions
  using Piecewise Deterministic Markov Processes
Efficient computation of the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes
Augustin Chevallier
F. Cazals
Paul Fearnhead
9
13
0
18 Feb 2022
The no-free-lunch theorems of supervised learning
The no-free-lunch theorems of supervised learning
T. Sterkenburg
Peter Grünwald
FedML
6
55
0
09 Feb 2022
Adaptation of the Tuning Parameter in General Bayesian Inference with
  Robust Divergence
Adaptation of the Tuning Parameter in General Bayesian Inference with Robust Divergence
S. Yonekura
S. Sugasawa
17
23
0
13 Jun 2021
Conformal Bayesian Computation
Conformal Bayesian Computation
Edwin Fong
Chris Holmes
36
24
0
11 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
10
6
0
24 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Marginal likelihood computation for model selection and hypothesis
  testing: an extensive review
Marginal likelihood computation for model selection and hypothesis testing: an extensive review
F. Llorente
Luca Martino
D. Delgado
J. Lopez-Santiago
19
83
0
17 May 2020
When are Bayesian model probabilities overconfident?
When are Bayesian model probabilities overconfident?
O. Oelrich
S. Ding
Måns Magnusson
Aki Vehtari
M. Villani
11
17
0
09 Mar 2020
1