ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.08196
11
4

Optimisation of Overparametrized Sum-Product Networks

20 May 2019
Martin Trapp
Robert Peharz
Franz Pernkopf
    TPM
ArXivPDFHTML
Abstract

It seems to be a pearl of conventional wisdom that parameter learning in deep sum-product networks is surprisingly fast compared to shallow mixture models. This paper examines the effects of overparameterization in sum-product networks on the speed of parameter optimisation. Using theoretical analysis and empirical experiments, we show that deep sum-product networks exhibit an implicit acceleration compared to their shallow counterpart. In fact, gradient-based optimisation in deep tree-structured sum-product networks is equal to gradient ascend with adaptive and time-varying learning rates and additional momentum terms.

View on arXiv
Comments on this paper