ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07808
  4. Cited By
Characterizing SLAM Benchmarks and Methods for the Robust Perception Age

Characterizing SLAM Benchmarks and Methods for the Robust Perception Age

19 May 2019
Wenkai Ye
Yipu Zhao
Patricio A. Vela
ArXivPDFHTML

Papers citing "Characterizing SLAM Benchmarks and Methods for the Robust Perception Age"

2 / 2 papers shown
Title
Are We Ready for Robust and Resilient SLAM? A Framework For Quantitative
  Characterization of SLAM Datasets
Are We Ready for Robust and Resilient SLAM? A Framework For Quantitative Characterization of SLAM Datasets
Islam Ali
Hong Zhang
25
7
0
23 Feb 2022
Closed-Loop Benchmarking of Stereo Visual-Inertial SLAM Systems:
  Understanding the Impact of Drift and Latency on Tracking Accuracy
Closed-Loop Benchmarking of Stereo Visual-Inertial SLAM Systems: Understanding the Impact of Drift and Latency on Tracking Accuracy
Yipu Zhao
Justin S. Smith
Sambhu H. Karumanchi
Patricio A. Vela
16
13
0
03 Mar 2020
1