ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07357
  4. Cited By
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep
  Feature Spaces

Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces

17 May 2019
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
    BDL
ArXivPDFHTML

Papers citing "Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces"

8 / 58 papers shown
Title
Action-Conditional Recurrent Kalman Networks For Forward and Inverse
  Dynamics Learning
Action-Conditional Recurrent Kalman Networks For Forward and Inverse Dynamics Learning
Vaisakh Shaj
P. Becker
Le Chen
Harit Pandya
Niels van Duijkeren
C. J. Taylor
Marc Hanheide
Gerhard Neumann
AI4CE
11
14
0
20 Oct 2020
Few-shot model-based adaptation in noisy conditions
Few-shot model-based adaptation in noisy conditions
Karol Arndt
Ali Ghadirzadeh
Murtaza Hazara
Ville Kyrki
9
8
0
16 Oct 2020
Augmenting Physical Models with Deep Networks for Complex Dynamics
  Forecasting
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CE
PINN
33
132
0
09 Oct 2020
Deep Switching Auto-Regressive Factorization:Application to Time Series
  Forecasting
Deep Switching Auto-Regressive Factorization:Application to Time Series Forecasting
Amirreza Farnoosh
Bahar Azari
Sarah Ostadabbas
BDL
AI4TS
18
20
0
10 Sep 2020
Deep Markov Spatio-Temporal Factorization
Deep Markov Spatio-Temporal Factorization
Amirreza Farnoosh
B. Rezaei
Eli Sennesh
Zulqarnain Khan
Jennifer Dy
Ajay Satpute
J. B. Hutchinson
Jan-Willem van de Meent
Sarah Ostadabbas
AI4TS
15
4
0
22 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised
  Video Prediction
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
93
289
0
03 Mar 2020
Deep Variational Luenberger-type Observer for Stochastic Video Prediction
Dong Wang
Feng Zhou
Zheng Yan
Guang Yao
Zongxuan Liu
Wennan Ma
Cewu Lu
39
0
0
12 Feb 2020
Gating Revisited: Deep Multi-layer RNNs That Can Be Trained
Gating Revisited: Deep Multi-layer RNNs That Can Be Trained
Mehmet Özgür Türkoglu
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
14
47
0
25 Nov 2019
Previous
12