Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.07112
Cited By
A critique of the DeepSec Platform for Security Analysis of Deep Learning Models
17 May 2019
Nicholas Carlini
ELM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A critique of the DeepSec Platform for Security Analysis of Deep Learning Models"
7 / 7 papers shown
Title
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Antonio Emanuele Cinà
Jérôme Rony
Maura Pintor
Christian Scano
Ambra Demontis
Battista Biggio
Ismail Ben Ayed
Fabio Roli
ELM
AAML
SILM
46
8
0
30 Apr 2024
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
38
75
0
29 Dec 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
139
16
0
31 Jan 2022
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
681
0
19 Oct 2020
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
31
36
0
26 Dec 2019
Taking Care of The Discretization Problem: A Comprehensive Study of the Discretization Problem and A Black-Box Adversarial Attack in Discrete Integer Domain
Lei Bu
Yuchao Duan
Fu Song
Zhe Zhao
AAML
37
18
0
19 May 2019
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
338
5,849
0
08 Jul 2016
1