ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06649
  4. Cited By
What do Entity-Centric Models Learn? Insights from Entity Linking in
  Multi-Party Dialogue

What do Entity-Centric Models Learn? Insights from Entity Linking in Multi-Party Dialogue

16 May 2019
Laura Aina
Carina Silberer
M. Westera
Ionut-Teodor Sorodoc
Gemma Boleda
ArXivPDFHTML

Papers citing "What do Entity-Centric Models Learn? Insights from Entity Linking in Multi-Party Dialogue"

3 / 3 papers shown
Title
Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic
  benchmarking
Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic benchmarking
Ronen Tamari
Kyle Richardson
Aviad Sar-Shalom
Noam Kahlon
Nelson F. Liu
Reut Tsarfaty
Dafna Shahaf
50
5
0
30 Nov 2021
What you can cram into a single vector: Probing sentence embeddings for
  linguistic properties
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
201
883
0
03 May 2018
Reference-Aware Language Models
Reference-Aware Language Models
Zichao Yang
Phil Blunsom
Chris Dyer
Wang Ling
224
80
0
05 Nov 2016
1