ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06023
  4. Cited By
Distribution Calibration for Regression

Distribution Calibration for Regression

15 May 2019
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
    UQCV
ArXivPDFHTML

Papers citing "Distribution Calibration for Regression"

29 / 29 papers shown
Title
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Three Types of Calibration with Properties and their Semantic and Formal Relationships
Rabanus Derr
Jessie Finocchiaro
Robert C. Williamson
38
0
0
25 Apr 2025
Calibrating Expressions of Certainty
Calibrating Expressions of Certainty
Peiqi Wang
Barbara D. Lam
Yingcheng Liu
Ameneh Asgari-Targhi
Rameswar Panda
W. Wells
Tina Kapur
Polina Golland
32
1
0
06 Oct 2024
Calibrated Probabilistic Forecasts for Arbitrary Sequences
Calibrated Probabilistic Forecasts for Arbitrary Sequences
Charles Marx
Volodymyr Kuleshov
Stefano Ermon
AI4TS
36
1
0
27 Sep 2024
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal
  Prediction with Graph Neural Networks
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
Dingyi Zhuang
Yuheng Bu
Guang Wang
Shenhao Wang
Jinhua Zhao
BDL
32
1
0
13 Sep 2024
Orthogonal Causal Calibration
Orthogonal Causal Calibration
Justin Whitehouse
Christopher Jung
Vasilis Syrgkanis
Bryan Wilder
Zhiwei Steven Wu
CML
114
1
0
04 Jun 2024
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
58
1
0
02 Nov 2023
Calibration by Distribution Matching: Trainable Kernel Calibration
  Metrics
Calibration by Distribution Matching: Trainable Kernel Calibration Metrics
Charles Marx
Sofian Zalouk
Stefano Ermon
27
6
0
31 Oct 2023
Towards Building Self-Aware Object Detectors via Reliable Uncertainty
  Quantification and Calibration
Towards Building Self-Aware Object Detectors via Reliable Uncertainty Quantification and Calibration
Kemal Oksuz
Thomas Joy
P. Dokania
UQCV
17
16
0
03 Jul 2023
Sharp Calibrated Gaussian Processes
Sharp Calibrated Gaussian Processes
A. Capone
Geoff Pleiss
Sandra Hirche
UQCV
29
4
0
23 Feb 2023
On the role of Model Uncertainties in Bayesian Optimization
On the role of Model Uncertainties in Bayesian Optimization
Jonathan Foldager
Mikkel Jordahn
Lars Kai Hansen
Michael Riis Andersen
19
4
0
14 Jan 2023
Calibration tests beyond classification
Calibration tests beyond classification
David Widmann
Fredrik Lindsten
Dave Zachariah
30
17
0
21 Oct 2022
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated
  distributions
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
Paweł Antoni Pierzchlewicz
R. J. Cotton
Mohammad Ali Bashiri
Fabian H. Sinz
3DH
21
8
0
20 Oct 2022
Quantile-constrained Wasserstein projections for robust interpretability
  of numerical and machine learning models
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
35
2
0
23 Sep 2022
Parametric and Multivariate Uncertainty Calibration for Regression and
  Object Detection
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
34
8
0
04 Jul 2022
A review of machine learning concepts and methods for addressing
  challenges in probabilistic hydrological post-processing and forecasting
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
Georgia Papacharalampous
Hristos Tyralis
AI4CE
27
28
0
17 Jun 2022
COLD Fusion: Calibrated and Ordinal Latent Distribution Fusion for
  Uncertainty-Aware Multimodal Emotion Recognition
COLD Fusion: Calibrated and Ordinal Latent Distribution Fusion for Uncertainty-Aware Multimodal Emotion Recognition
M. Tellamekala
Shahin Amiriparian
Björn W. Schuller
Elisabeth André
T. Giesbrecht
M. Valstar
23
25
0
12 Jun 2022
Low-Degree Multicalibration
Low-Degree Multicalibration
Parikshit Gopalan
Michael P. Kim
M. Singhal
Shengjia Zhao
FaML
UQCV
22
37
0
02 Mar 2022
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation
Volodymyr Kuleshov
Shachi Deshpande
UQCV
BDL
30
33
0
14 Dec 2021
Online Calibrated and Conformal Prediction Improves Bayesian
  Optimization
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
$f$-Cal: Calibrated aleatoric uncertainty estimation from neural
  networks for robot perception
fff-Cal: Calibrated aleatoric uncertainty estimation from neural networks for robot perception
Dhaivat Bhatt
Kaustubh Mani
Dishank Bansal
Krishna Murthy Jatavallabhula
Hanju Lee
Liam Paull
UQCV
23
5
0
28 Sep 2021
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
Fabian Küppers
Jan Kronenberger
Jonas Schneider
Anselm Haselhoff
UQCV
BDL
19
8
0
21 Sep 2021
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class
  Calibration
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
Shengjia Zhao
Michael P. Kim
Roshni Sahoo
Tengyu Ma
Stefano Ermon
20
55
0
12 Jul 2021
Flexible Model Aggregation for Quantile Regression
Flexible Model Aggregation for Quantile Regression
Rasool Fakoor
Tae-Soo Kim
Jonas W. Mueller
Alexander J. Smola
R. Tibshirani
19
19
0
26 Feb 2021
X-CAL: Explicit Calibration for Survival Analysis
X-CAL: Explicit Calibration for Survival Analysis
Mark Goldstein
Xintian Han
A. Puli
A. Perotte
Rajesh Ranganath
31
37
0
13 Jan 2021
Designing Accurate Emulators for Scientific Processes using
  Calibration-Driven Deep Models
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
8
21
0
05 May 2020
PAC-Bayes meta-learning with implicit task-specific posteriors
PAC-Bayes meta-learning with implicit task-specific posteriors
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
BDL
31
7
0
05 Mar 2020
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
29
0
28 Sep 2019
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
OOD
BDL
UQCV
19
54
0
27 Jul 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1