Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.05957
Cited By
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
15 May 2019
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression"
38 / 38 papers shown
Title
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
59
7
0
12 May 2023
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
56
502
0
28 Jan 2019
Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training
Youjie Li
Hang Qiu
Songze Li
A. Avestimehr
Nam Sung Kim
Alex Schwing
FedML
59
104
0
08 Nov 2018
Communication Efficient Parallel Algorithms for Optimization on Manifolds
B. Saparbayeva
M. Zhang
Lizhen Lin
23
4
0
26 Oct 2018
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
Jeremy Bernstein
Jiawei Zhao
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
53
46
0
11 Oct 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
165
493
0
27 Sep 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
71
749
0
20 Sep 2018
COLA: Decentralized Linear Learning
Lie He
An Bian
Martin Jaggi
80
120
0
13 Aug 2018
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
71
236
0
21 Jun 2018
ATOMO: Communication-efficient Learning via Atomic Sparsification
Hongyi Wang
Scott Sievert
Zachary B. Charles
Shengchao Liu
S. Wright
Dimitris Papailiopoulos
67
353
0
11 Jun 2018
Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms
Xueru Zhang
Mohammad Mahdi Khalili
M. Liu
FedML
88
90
0
06 Jun 2018
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
118
490
0
27 May 2018
Towards More Efficient Stochastic Decentralized Learning: Faster Convergence and Sparse Communication
Zebang Shen
Aryan Mokhtari
Tengfei Zhou
P. Zhao
Hui Qian
93
56
0
25 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
53
298
0
25 May 2018
Decoupled Parallel Backpropagation with Convergence Guarantee
Zhouyuan Huo
Bin Gu
Qian Yang
Heng-Chiao Huang
62
97
0
27 Apr 2018
D
2
^2
2
: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
31
350
0
19 Mar 2018
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
55
273
0
17 Mar 2018
SparCML: High-Performance Sparse Communication for Machine Learning
Cédric Renggli
Saleh Ashkboos
Mehdi Aghagolzadeh
Dan Alistarh
Torsten Hoefler
58
126
0
22 Feb 2018
Distributed Stochastic Optimization via Adaptive SGD
Ashok Cutkosky
R. Busa-Fekete
FedML
65
21
0
16 Feb 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
87
1,042
0
13 Feb 2018
AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training
Chia-Yu Chen
Jungwook Choi
D. Brand
A. Agrawal
Wei Zhang
K. Gopalakrishnan
ODL
49
174
0
07 Dec 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
74
525
0
26 Oct 2017
Asynchronous Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Wei Zhang
Ce Zhang
Ji Liu
ODL
46
500
0
18 Oct 2017
Adaptive Consensus ADMM for Distributed Optimization
Zheng Xu
Gavin Taylor
Hao Li
Mário A. T. Figueiredo
Xiaoming Yuan
Tom Goldstein
41
62
0
09 Jun 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
50
1,227
0
25 May 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
140
987
0
22 May 2017
Communication-efficient Algorithms for Distributed Stochastic Principal Component Analysis
Dan Garber
Ohad Shamir
Nathan Srebro
47
43
0
27 Feb 2017
Decentralized Consensus Optimization with Asynchrony and Delays
Tianyu Wu
Kun Yuan
Qing Ling
W. Yin
Ali H. Sayed
34
10
0
01 Dec 2016
How to scale distributed deep learning?
Peter H. Jin
Qiaochu Yuan
F. Iandola
Kurt Keutzer
3DH
51
137
0
14 Nov 2016
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
97
364
0
02 Nov 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
429
18,346
0
27 May 2016
Efficient Distributed Learning with Sparsity
Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
FedML
61
152
0
25 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
135
499
0
27 Jun 2015
An Asynchronous Mini-Batch Algorithm for Regularized Stochastic Optimization
Hamid Reza Feyzmahdavian
Arda Aytekin
M. Johansson
51
117
0
18 May 2015
Distributed optimization over time-varying directed graphs
A. Nedić
Alexander Olshevsky
59
998
0
10 Mar 2013
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
191
2,273
0
28 Jun 2011
Distributed Delayed Stochastic Optimization
Alekh Agarwal
John C. Duchi
123
626
0
28 Apr 2011
1