ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.05901
  4. Cited By
Learning What and Where to Transfer

Learning What and Where to Transfer

15 May 2019
Yunhun Jang
Hankook Lee
Sung Ju Hwang
Jinwoo Shin
ArXivPDFHTML

Papers citing "Learning What and Where to Transfer"

24 / 24 papers shown
Title
Token Coordinated Prompt Attention is Needed for Visual Prompting
Token Coordinated Prompt Attention is Needed for Visual Prompting
Zichen Liu
Xu Zou
Gang Hua
Jiahuan Zhou
39
0
0
05 May 2025
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
55
0
0
13 Mar 2025
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
51
1
0
18 Apr 2024
Dual-path Frequency Discriminators for Few-shot Anomaly Detection
Dual-path Frequency Discriminators for Few-shot Anomaly Detection
Yuhu Bai
Jiangning Zhang
Yuhang Dong
Guanzhong Tian
Liang Liu
Yunkang Cao
Yabiao Wang
Chengjie Wang
44
2
0
07 Mar 2024
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for
  Meta-Learning
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
28
4
0
13 May 2023
Generic-to-Specific Distillation of Masked Autoencoders
Generic-to-Specific Distillation of Masked Autoencoders
Wei Huang
Zhiliang Peng
Li Dong
Furu Wei
Jianbin Jiao
QiXiang Ye
32
22
0
28 Feb 2023
AI-KD: Adversarial learning and Implicit regularization for
  self-Knowledge Distillation
AI-KD: Adversarial learning and Implicit regularization for self-Knowledge Distillation
Hyungmin Kim
Sungho Suh
Sunghyun Baek
Daehwan Kim
Daun Jeong
Hansang Cho
Junmo Kim
30
5
0
20 Nov 2022
Few-Shot Learning of Compact Models via Task-Specific Meta Distillation
Few-Shot Learning of Compact Models via Task-Specific Meta Distillation
Yong Wu
Shekhor Chanda
M. Hosseinzadeh
Zhi Liu
Yang Wang
VLM
29
7
0
18 Oct 2022
Transfer without Forgetting
Transfer without Forgetting
Matteo Boschini
Lorenzo Bonicelli
Angelo Porrello
Giovanni Bellitto
M. Pennisi
S. Palazzo
C. Spampinato
Simone Calderara
CLL
22
46
0
01 Jun 2022
Auto-Transfer: Learning to Route Transferrable Representations
Auto-Transfer: Learning to Route Transferrable Representations
K. Murugesan
Vijay Sadashivaiah
Ronny Luss
Karthikeyan Shanmugam
Pin-Yu Chen
Amit Dhurandhar
AAML
46
5
0
02 Feb 2022
Doing More with Less: Overcoming Data Scarcity for POI Recommendation
  via Cross-Region Transfer
Doing More with Less: Overcoming Data Scarcity for POI Recommendation via Cross-Region Transfer
Vinayak Gupta
Srikanta J. Bedathur
43
19
0
16 Jan 2022
Transferability in Deep Learning: A Survey
Transferability in Deep Learning: A Survey
Junguang Jiang
Yang Shu
Jianmin Wang
Mingsheng Long
OOD
34
101
0
15 Jan 2022
Distilling a Powerful Student Model via Online Knowledge Distillation
Distilling a Powerful Student Model via Online Knowledge Distillation
Shaojie Li
Mingbao Lin
Yan Wang
Yongjian Wu
Yonghong Tian
Ling Shao
Rongrong Ji
FedML
27
46
0
26 Mar 2021
AlphaNet: Improved Training of Supernets with Alpha-Divergence
AlphaNet: Improved Training of Supernets with Alpha-Divergence
Dilin Wang
Chengyue Gong
Meng Li
Qiang Liu
Vikas Chandra
155
44
0
16 Feb 2021
Cross-Layer Distillation with Semantic Calibration
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
45
286
0
06 Dec 2020
Real-Time Decentralized knowledge Transfer at the Edge
Real-Time Decentralized knowledge Transfer at the Edge
Orpaz Goldstein
Mohammad Kachuee
Dereck Shiell
Majid Sarrafzadeh
16
1
0
11 Nov 2020
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous
  Graphs
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs
Dasol Hwang
Jinyoung Park
Sunyoung Kwon
KyungHyun Kim
Jung-Woo Ha
Hyunwoo J. Kim
44
67
0
16 Jul 2020
Knowledge Distillation: A Survey
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,843
0
09 Jun 2020
Context-Aware Domain Adaptation in Semantic Segmentation
Context-Aware Domain Adaptation in Semantic Segmentation
Jinyu Yang
Weizhi An
Chao-chao Yan
P. Zhao
Junzhou Huang
33
56
0
09 Mar 2020
Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs
Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs
Sangwoo Mo
Minsu Cho
Jinwoo Shin
30
212
0
25 Feb 2020
Transfer Adaptation Learning: A Decade Survey
Transfer Adaptation Learning: A Decade Survey
Lei Zhang
Xinbo Gao
OOD
58
184
0
12 Mar 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
717
0
13 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
377
11,700
0
09 Mar 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
133
409
0
06 Mar 2017
1