ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.05435
  4. Cited By
Deep Gaussian Processes with Importance-Weighted Variational Inference

Deep Gaussian Processes with Importance-Weighted Variational Inference

14 May 2019
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Gaussian Processes with Importance-Weighted Variational Inference"

20 / 20 papers shown
Title
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
170
0
0
01 Jul 2024
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDLUQCV
108
5
0
04 Mar 2024
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Çağatay Yıldız
M. Kandemir
Barbara Rakitsch
135
12
0
24 May 2022
Visual Attention Methods in Deep Learning: An In-Depth Survey
Visual Attention Methods in Deep Learning: An In-Depth Survey
Mohammed Hassanin
Saeed Anwar
Ibrahim Radwan
Fahad Shahbaz Khan
Ajmal Mian
136
166
0
16 Apr 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes:
  Covariance, Expressivity, and Neural Tangent Kernel
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
76
0
0
14 Mar 2022
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo
  Objectives
Uphill Roads to Variational Tightness: Monotonicity and Monte Carlo Objectives
Pierre-Alexandre Mattei
J. Frellsen
56
4
0
26 Jan 2022
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
75
4
0
01 Oct 2021
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
  Random Features
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features
Thomas M. McDonald
Mauricio A. Alvarez
85
10
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
139
134
0
14 May 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
89
23
0
12 Apr 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
172
52
0
27 Dec 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep
  Gaussian Processes
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
25
3
0
01 Nov 2020
Inter-domain Deep Gaussian Processes
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
81
11
0
01 Nov 2020
Characterizing Deep Gaussian Processes via Nonlinear Recurrence Systems
Characterizing Deep Gaussian Processes via Nonlinear Recurrence Systems
Anh Tong
Jaesik Choi
66
2
0
19 Oct 2020
Modulating Scalable Gaussian Processes for Expressive Statistical
  Learning
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
51
4
0
29 Aug 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
101
10
0
18 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
  Predictive Uncertainties
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDLUQCV
77
8
0
22 May 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
109
95
0
02 Mar 2020
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
84
19
0
27 May 2019
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
699
0
03 Jul 2018
1