Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.05040
Cited By
Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels
13 May 2019
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels"
24 / 74 papers shown
Title
NGC: A Unified Framework for Learning with Open-World Noisy Data
Zhi-Fan Wu
Tong Wei
Jianwen Jiang
Chaojie Mao
Mingqian Tang
Yu-Feng Li
11
80
0
25 Aug 2021
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan
Jun Xia
Lirong Wu
Stan Z. Li
NoLa
76
116
0
05 Aug 2021
Mitigating Memorization in Sample Selection for Learning with Noisy Labels
Kyeongbo Kong
Junggi Lee
Youngchul Kwak
Young-Rae Cho
Seong-Eun Kim
Woo‐Jin Song
NoLa
18
0
0
08 Jul 2021
Federated Noisy Client Learning
Huazhu Fu
Li Li
Bo Han
Chengzhong Xu
Ling Shao
FedML
28
26
0
24 Jun 2021
Towards Understanding Deep Learning from Noisy Labels with Small-Loss Criterion
Xian-Jin Gui
Wei Wang
Zhang-Hao Tian
NoLa
33
44
0
17 Jun 2021
Estimating the electrical power output of industrial devices with end-to-end time-series classification in the presence of label noise
Andrea Castellani
Sebastian Schmitt
Barbara Hammer
NoLa
30
18
0
01 May 2021
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment
F. Cordeiro
Ragav Sachdeva
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
19
77
0
06 Mar 2021
DST: Data Selection and joint Training for Learning with Noisy Labels
Yi Wei
Xue Mei
Xin Liu
Pengxiang Xu
NoLa
27
3
0
01 Mar 2021
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
42
144
0
11 Feb 2021
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
29
19
0
24 Jan 2021
Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
40
122
0
10 Dec 2020
A Topological Filter for Learning with Label Noise
Pengxiang Wu
Songzhu Zheng
Mayank Goswami
Dimitris N. Metaxas
Chao Chen
NoLa
30
112
0
09 Dec 2020
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
103
34
0
08 Dec 2020
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
158
0
09 Nov 2020
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
116
1,278
0
03 Oct 2020
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta
Roy Schwartz
Nicholas Lourie
Yizhong Wang
Hannaneh Hajishirzi
Noah A. Smith
Yejin Choi
44
429
0
22 Sep 2020
MoPro: Webly Supervised Learning with Momentum Prototypes
Junnan Li
Caiming Xiong
Guosheng Lin
26
94
0
17 Sep 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
31
29
0
10 Jun 2020
Towards Noise-resistant Object Detection with Noisy Annotations
Junnan Li
Caiming Xiong
R. Socher
Guosheng Lin
ObjD
NoLa
62
28
0
03 Mar 2020
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs
Han Yang
Xiao Yan
XINYAN DAI
Yongqiang Chen
James Cheng
13
36
0
18 Feb 2020
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
24
535
0
05 Dec 2019
Confident Learning: Estimating Uncertainty in Dataset Labels
Curtis G. Northcutt
Lu Jiang
Isaac L. Chuang
NoLa
38
674
0
31 Oct 2019
Generative Imputation and Stochastic Prediction
Mohammad Kachuee
Kimmo Karkkainen
Orpaz Goldstein
Sajad Darabi
Majid Sarrafzadeh
22
23
0
22 May 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
19
24
0
08 Apr 2019
Previous
1
2