ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.04610
  4. Cited By
Explainable AI for Trees: From Local Explanations to Global
  Understanding

Explainable AI for Trees: From Local Explanations to Global Understanding

11 May 2019
Scott M. Lundberg
G. Erion
Hugh Chen
A. DeGrave
J. Prutkin
B. Nair
R. Katz
J. Himmelfarb
N. Bansal
Su-In Lee
    FAtt
ArXivPDFHTML

Papers citing "Explainable AI for Trees: From Local Explanations to Global Understanding"

24 / 24 papers shown
Title
Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach
Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach
Oladipo A. Madamidola
Felix Ngobigha
Adnane Ez-zizi
AAML
16
5
0
07 Jul 2024
Regression Trees Know Calculus
Regression Trees Know Calculus
Nathan Wycoff
31
0
0
22 May 2024
Improving the accuracy of freight mode choice models: A case study using
  the 2017 CFS PUF data set and ensemble learning techniques
Improving the accuracy of freight mode choice models: A case study using the 2017 CFS PUF data set and ensemble learning techniques
Diyi Liu
Hyeonsup Lim
M. Uddin
Yuandong Liu
Lee D. Han
Ho-Ling Hwang
Shih-Miao Chin
13
0
0
01 Feb 2024
Confident Feature Ranking
Confident Feature Ranking
Bitya Neuhof
Y. Benjamini
FAtt
29
3
0
28 Jul 2023
GLOBE-CE: A Translation-Based Approach for Global Counterfactual
  Explanations
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
38
16
0
26 May 2023
Explaining black box text modules in natural language with language
  models
Explaining black box text modules in natural language with language models
Chandan Singh
Aliyah R. Hsu
Richard Antonello
Shailee Jain
Alexander G. Huth
Bin-Xia Yu
Jianfeng Gao
MILM
34
47
0
17 May 2023
MLC at HECKTOR 2022: The Effect and Importance of Training Data when
  Analyzing Cases of Head and Neck Tumors using Machine Learning
MLC at HECKTOR 2022: The Effect and Importance of Training Data when Analyzing Cases of Head and Neck Tumors using Machine Learning
Vajira Thambawita
A. Storaas
Steven A. Hicks
P. Halvorsen
Michael A. Riegler
16
1
0
30 Nov 2022
An interpretable imbalanced semi-supervised deep learning framework for
  improving differential diagnosis of skin diseases
An interpretable imbalanced semi-supervised deep learning framework for improving differential diagnosis of skin diseases
Futian Weng
Yuanting Ma
J. Sun
Shijun Shan
Qiyuan Li
Jianping Zhu
Yang Wang
Yan Xu
34
0
0
20 Nov 2022
A $k$-additive Choquet integral-based approach to approximate the SHAP
  values for local interpretability in machine learning
A kkk-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning
G. D. Pelegrina
L. Duarte
M. Grabisch
FAtt
TDI
35
27
0
03 Nov 2022
Explanation Shift: Detecting distribution shifts on tabular data via the
  explanation space
Explanation Shift: Detecting distribution shifts on tabular data via the explanation space
Carlos Mougan
Klaus Broelemann
Gjergji Kasneci
T. Tiropanis
Steffen Staab
FAtt
27
7
0
22 Oct 2022
Explanation Method for Anomaly Detection on Mixed Numerical and
  Categorical Spaces
Explanation Method for Anomaly Detection on Mixed Numerical and Categorical Spaces
Iñigo López-Riobóo Botana
Carlos Eiras-Franco
Julio César Hernández Castro
Amparo Alonso-Betanzos
21
0
0
09 Sep 2022
PDD-SHAP: Fast Approximations for Shapley Values using Functional
  Decomposition
PDD-SHAP: Fast Approximations for Shapley Values using Functional Decomposition
Arne Gevaert
Yvan Saeys
FAtt
TDI
17
2
0
26 Aug 2022
Predicting tacrolimus exposure in kidney transplanted patients using
  machine learning
Predicting tacrolimus exposure in kidney transplanted patients using machine learning
A. Storaas
A. Aasberg
P. Halvorsen
Michael A. Riegler
Inga Strümke
11
1
0
09 May 2022
Explainable Machine Learning for Predicting Homicide Clearance in the
  United States
Explainable Machine Learning for Predicting Homicide Clearance in the United States
G. Campedelli
23
13
0
09 Mar 2022
Fighting Money Laundering with Statistics and Machine Learning
Fighting Money Laundering with Statistics and Machine Learning
R. Jensen
Alexandros Iosifidis
36
13
0
11 Jan 2022
Global explainability in aligned image modalities
Global explainability in aligned image modalities
Justin Engelmann
Amos Storkey
Miguel O. Bernabeu
FAtt
30
4
0
17 Dec 2021
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for
  Machine Learning
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning
Yongchan Kwon
James Zou
TDI
39
122
0
26 Oct 2021
Pitfalls of Explainable ML: An Industry Perspective
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
16
9
0
14 Jun 2021
Evaluating the Correctness of Explainable AI Algorithms for
  Classification
Evaluating the Correctness of Explainable AI Algorithms for Classification
Orcun Yalcin
Xiuyi Fan
Siyuan Liu
XAI
FAtt
16
15
0
20 May 2021
Shapley values for feature selection: The good, the bad, and the axioms
Shapley values for feature selection: The good, the bad, and the axioms
D. Fryer
Inga Strümke
Hien Nguyen
FAtt
TDI
6
190
0
22 Feb 2021
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A
  Top-Down Approach
Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A Top-Down Approach
A. Moawad
E. Islam
Namdoo Kim
R. Vijayagopal
A. Rousseau
Wei Biao Wu
15
5
0
15 Jun 2020
LionForests: Local Interpretation of Random Forests
LionForests: Local Interpretation of Random Forests
Ioannis Mollas
Nick Bassiliades
I. Vlahavas
Grigorios Tsoumakas
16
12
0
20 Nov 2019
Improving performance of deep learning models with axiomatic attribution
  priors and expected gradients
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
21
80
0
25 Jun 2019
DeepSurv: Personalized Treatment Recommender System Using A Cox
  Proportional Hazards Deep Neural Network
DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network
Jared Katzman
Uri Shaham
Jonathan Bates
A. Cloninger
Tingting Jiang
Y. Kluger
BDL
CML
OOD
115
1,231
0
02 Jun 2016
1