Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.04172
Cited By
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
10 May 2019
Christian Etmann
Sebastian Lunz
Peter Maass
Carola-Bibiane Schönlieb
AAML
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Connection Between Adversarial Robustness and Saliency Map Interpretability"
34 / 34 papers shown
Title
Adversarially Pretrained Transformers may be Universally Robust In-Context Learners
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
AAML
18
0
0
20 May 2025
Stability of Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
43
1
0
03 May 2024
Robust Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
45
0
0
03 May 2024
Theoretical Understanding of Learning from Adversarial Perturbations
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
AAML
51
1
0
16 Feb 2024
CLIPAG: Towards Generator-Free Text-to-Image Generation
Roy Ganz
Michael Elad
VLM
38
7
0
29 Jun 2023
Adversarial Counterfactual Visual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
43
27
0
17 Mar 2023
Bayesian Neural Networks Avoid Encoding Complex and Perturbation-Sensitive Concepts
Qihan Ren
Huiqi Deng
Yunuo Chen
Siyu Lou
Quanshi Zhang
BDL
AAML
38
10
0
25 Feb 2023
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
44
18
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
37
4
0
09 Nov 2022
Diffusion Visual Counterfactual Explanations
Maximilian Augustin
Valentyn Boreiko
Francesco Croce
Matthias Hein
DiffM
BDL
32
68
0
21 Oct 2022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
Tilman Raukur
A. Ho
Stephen Casper
Dylan Hadfield-Menell
AAML
AI4CE
28
125
0
27 Jul 2022
Fooling Explanations in Text Classifiers
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
AAML
35
19
0
07 Jun 2022
How explainable are adversarially-robust CNNs?
Mehdi Nourelahi
Lars Kotthoff
Peijie Chen
Anh Totti Nguyen
AAML
FAtt
24
8
0
25 May 2022
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
37
26
0
16 May 2022
How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations?
Alvin Chan
Yew-Soon Ong
Clement Tan
AAML
24
13
0
09 May 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
40
120
0
21 Feb 2022
Visualizing Automatic Speech Recognition -- Means for a Better Understanding?
Karla Markert
Romain Parracone
Mykhailo Kulakov
Philip Sperl
Ching-yu Kao
Konstantin Böttinger
21
8
0
01 Feb 2022
Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction
Dongfang Li
Baotian Hu
Qingcai Chen
Tujie Xu
Jingcong Tao
Yunan Zhang
37
12
0
20 Dec 2021
Robust and Information-theoretically Safe Bias Classifier against Adversarial Attacks
Lijia Yu
Xiao-Shan Gao
AAML
23
5
0
08 Nov 2021
Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided Curriculum Learning Approach
A. Sarkar
Anirban Sarkar
Sowrya Gali
V. Balasubramanian
AAML
35
7
0
30 Oct 2021
Improving the trustworthiness of image classification models by utilizing bounding-box annotations
K. Dharma
Chicheng Zhang
32
5
0
15 Aug 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
197
0
12 Jul 2021
Attack to Fool and Explain Deep Networks
Naveed Akhtar
M. Jalwana
Bennamoun
Ajmal Mian
AAML
32
33
0
20 Jun 2021
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
32
21
0
17 Jun 2021
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard
Pierre-Alain Moëllic
Martial Mermillod
Yannick Bourrier
Romain Cohendet
M. Solinas
M. Reyboz
AAML
30
17
0
26 Apr 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Identifying Untrustworthy Predictions in Neural Networks by Geometric Gradient Analysis
Leo Schwinn
A. Nguyen
René Raab
Leon Bungert
Daniel Tenbrinck
Dario Zanca
Martin Burger
Bjoern M. Eskofier
AAML
26
15
0
24 Feb 2021
On the human-recognizability phenomenon of adversarially trained deep image classifiers
Jonathan W. Helland
Nathan M. VanHoudnos
AAML
27
4
0
18 Dec 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
51
8
0
03 Nov 2020
Quantifying the Preferential Direction of the Model Gradient in Adversarial Training With Projected Gradient Descent
Ricardo Bigolin Lanfredi
Joyce D. Schroeder
Tolga Tasdizen
27
11
0
10 Sep 2020
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
21
104
0
13 Nov 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
23
230
0
24 Jul 2019
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
31
63
0
28 May 2019
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
353
5,849
0
08 Jul 2016
1