ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03871
  4. Cited By
Differentially Private Learning with Adaptive Clipping

Differentially Private Learning with Adaptive Clipping

9 May 2019
Galen Andrew
Om Thakkar
H. B. McMahan
Swaroop Ramaswamy
    FedML
ArXivPDFHTML

Papers citing "Differentially Private Learning with Adaptive Clipping"

17 / 67 papers shown
Title
Communication-Efficient Triangle Counting under Local Differential
  Privacy
Communication-Efficient Triangle Counting under Local Differential Privacy
Jacob Imola
Takao Murakami
Kamalika Chaudhuri
40
31
0
13 Oct 2021
The Skellam Mechanism for Differentially Private Federated Learning
The Skellam Mechanism for Differentially Private Federated Learning
Naman Agarwal
Peter Kairouz
Ziyu Liu
FedML
22
122
0
11 Oct 2021
Selective Differential Privacy for Language Modeling
Selective Differential Privacy for Language Modeling
Weiyan Shi
Aiqi Cui
Evan Li
R. Jia
Zhou Yu
20
68
0
30 Aug 2021
Efficient Hyperparameter Optimization for Differentially Private Deep
  Learning
Efficient Hyperparameter Optimization for Differentially Private Deep Learning
Aman Priyanshu
Rakshit Naidu
Fatemehsadat Mireshghallah
Mohammad Malekzadeh
37
5
0
09 Aug 2021
Large-Scale Differentially Private BERT
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
36
132
0
03 Aug 2021
An Efficient DP-SGD Mechanism for Large Scale NLP Models
An Efficient DP-SGD Mechanism for Large Scale NLP Models
Christophe Dupuy
Radhika Arava
Rahul Gupta
Anna Rumshisky
SyDa
26
35
0
14 Jul 2021
Understanding Clipping for Federated Learning: Convergence and
  Client-Level Differential Privacy
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
30
91
0
25 Jun 2021
On Large-Cohort Training for Federated Learning
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
21
113
0
15 Jun 2021
DataLens: Scalable Privacy Preserving Training via Gradient Compression
  and Aggregation
DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation
Wei Ping
Fan Wu
Yunhui Long
Luka Rimanic
Ce Zhang
Bo-wen Li
FedML
45
63
0
20 Mar 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with
  Secure Aggregation
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
44
232
0
12 Feb 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
34
41
0
05 Feb 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Fast Dimension Independent Private AdaGrad on Publicly Estimated
  Subspaces
Fast Dimension Independent Private AdaGrad on Publicly Estimated Subspaces
Peter Kairouz
Mónica Ribero
Keith Rush
Abhradeep Thakurta
93
14
0
14 Aug 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
32
162
0
16 Jun 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via
  Private Gradient Descent
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
35
50
0
11 Jun 2020
Anonymizing Data for Privacy-Preserving Federated Learning
Anonymizing Data for Privacy-Preserving Federated Learning
Olivia Choudhury
A. Gkoulalas-Divanis
Theodoros Salonidis
I. Sylla
Yoonyoung Park
Grace Hsu
Amar K. Das
FedML
30
42
0
21 Feb 2020
Asynchronous Federated Learning with Differential Privacy for Edge
  Intelligence
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
19
33
0
17 Dec 2019
Previous
12