ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.01205
  4. Cited By
Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using
  Physics-Informed Neural Networks

Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks

3 May 2019
Dongkun Zhang
Ling Guo
George Karniadakis
    AI4CE
ArXivPDFHTML

Papers citing "Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks"

10 / 10 papers shown
Title
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
84
2
0
27 Sep 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
63
7
0
08 May 2024
Quantifying total uncertainty in physics-informed neural networks for
  solving forward and inverse stochastic problems
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
98
405
0
21 Sep 2018
Deep Learning of Vortex Induced Vibrations
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
43
373
0
26 Aug 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
  for Assimilating Flow Visualization Data
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
63
159
0
13 Aug 2018
Forward-Backward Stochastic Neural Networks: Deep Learning of
  High-dimensional Partial Differential Equations
Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations
M. Raissi
87
186
0
19 Apr 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
54
611
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
68
912
0
28 Nov 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial
  Differential Equations
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CE
PINN
58
1,134
0
02 Aug 2017
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
349
18,300
0
27 May 2016
1