Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01034
Cited By
Transfer of Adversarial Robustness Between Perturbation Types
3 May 2019
Daniel Kang
Yi Sun
Tom B. Brown
Dan Hendrycks
Jacob Steinhardt
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transfer of Adversarial Robustness Between Perturbation Types"
19 / 19 papers shown
Title
X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
Hanxun Huang
Sarah Monazam Erfani
Yige Li
Xingjun Ma
James Bailey
AAML
53
0
0
08 May 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
73
3
0
04 Feb 2025
Estimating the Probabilities of Rare Outputs in Language Models
Gabriel Wu
Jacob Hilton
AAML
UQCV
48
2
0
17 Oct 2024
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
60
1
0
03 Oct 2024
RAMP: Boosting Adversarial Robustness Against Multiple
l
p
l_p
l
p
Perturbations
Enyi Jiang
Gagandeep Singh
AAML
30
1
0
09 Feb 2024
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
44
0
0
24 Mar 2023
Regret-Based Defense in Adversarial Reinforcement Learning
Roman Belaire
Pradeep Varakantham
Thanh Nguyen
David Lo
AAML
23
3
0
14 Feb 2023
Deep representation learning: Fundamentals, Perspectives, Applications, and Open Challenges
K. T. Baghaei
Amirreza Payandeh
Pooya Fayyazsanavi
Shahram Rahimi
Zhiqian Chen
Somayeh Bakhtiari Ramezani
FaML
AI4TS
38
6
0
27 Nov 2022
On the interplay of adversarial robustness and architecture components: patches, convolution and attention
Francesco Croce
Matthias Hein
43
6
0
14 Sep 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Real-time Detection of Practical Universal Adversarial Perturbations
Kenneth T. Co
Luis Muñoz-González
Leslie Kanthan
Emil C. Lupu
AAML
33
6
0
16 May 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
680
0
19 Oct 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
33
536
0
01 Jul 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
21
64
0
16 Jan 2020
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
18
104
0
13 Nov 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
92
0
29 Sep 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
89
1,426
0
16 Jul 2019
Functional Adversarial Attacks
Cassidy Laidlaw
S. Feizi
AAML
19
183
0
29 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
28
375
0
30 Apr 2019
1