ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00546
  4. Cited By
Billion-scale semi-supervised learning for image classification

Billion-scale semi-supervised learning for image classification

2 May 2019
I. Z. Yalniz
Hervé Jégou
Kan Chen
Manohar Paluri
D. Mahajan
    SSL
ArXivPDFHTML

Papers citing "Billion-scale semi-supervised learning for image classification"

24 / 124 papers shown
Title
Permute, Quantize, and Fine-tune: Efficient Compression of Neural
  Networks
Permute, Quantize, and Fine-tune: Efficient Compression of Neural Networks
Julieta Martinez
Jashan Shewakramani
Ting Liu
Ioan Andrei Bârsan
Wenyuan Zeng
R. Urtasun
MQ
20
30
0
29 Oct 2020
RDIS: Random Drop Imputation with Self-Training for Incomplete Time
  Series Data
RDIS: Random Drop Imputation with Self-Training for Incomplete Time Series Data
Taehyean Choi
Ji-Su Kang
Jong-Hwan Kim
SyDa
AI4TS
22
21
0
20 Oct 2020
Webly Supervised Image Classification with Metadata: Automatic Noisy
  Label Correction via Visual-Semantic Graph
Webly Supervised Image Classification with Metadata: Automatic Noisy Label Correction via Visual-Semantic Graph
Jingkang Yang
Weirong Chen
Xue Jiang
Xiaopeng Yan
Huabin Zheng
Wayne Zhang
NoLa
27
13
0
12 Oct 2020
Scalable Transfer Learning with Expert Models
Scalable Transfer Learning with Expert Models
J. Puigcerver
C. Riquelme
Basil Mustafa
Cédric Renggli
André Susano Pinto
Sylvain Gelly
Daniel Keysers
N. Houlsby
34
62
0
28 Sep 2020
Learning from Few Samples: A Survey
Learning from Few Samples: A Survey
Nihar Bendre
Hugo Terashima-Marín
Peyman Najafirad
VLM
BDL
26
54
0
30 Jul 2020
CyCNN: A Rotation Invariant CNN using Polar Mapping and Cylindrical
  Convolution Layers
CyCNN: A Rotation Invariant CNN using Polar Mapping and Cylindrical Convolution Layers
Jinpyo Kim
Wookeun Jung
Hyungmo Kim
Jaejin Lee
11
31
0
21 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
531
0
01 Jul 2020
Rethinking Pre-training and Self-training
Rethinking Pre-training and Self-training
Barret Zoph
Golnaz Ghiasi
Nayeon Lee
Huayu Chen
Hanxiao Liu
E. D. Cubuk
Quoc V. Le
SSeg
48
645
0
11 Jun 2020
VirTex: Learning Visual Representations from Textual Annotations
VirTex: Learning Visual Representations from Textual Annotations
Karan Desai
Justin Johnson
SSL
VLM
30
432
0
11 Jun 2020
An Overview of Deep Semi-Supervised Learning
An Overview of Deep Semi-Supervised Learning
Yassine Ouali
C´eline Hudelot
Myriam Tami
SSL
HAI
24
294
0
09 Jun 2020
Self-Training for End-to-End Speech Translation
Self-Training for End-to-End Speech Translation
J. Pino
Qiantong Xu
Xutai Ma
M. Dousti
Yun Tang
33
59
0
03 Jun 2020
Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences
  for Urban Scene Segmentation
Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation
Liang-Chieh Chen
Raphael Gontijo-Lopes
Bowen Cheng
Maxwell D. Collins
E. D. Cubuk
Barret Zoph
Hartwig Adam
Jonathon Shlens
28
76
0
20 May 2020
How Useful is Self-Supervised Pretraining for Visual Tasks?
How Useful is Self-Supervised Pretraining for Visual Tasks?
Alejandro Newell
Jia Deng
SSL
25
136
0
31 Mar 2020
Circumventing Outliers of AutoAugment with Knowledge Distillation
Circumventing Outliers of AutoAugment with Knowledge Distillation
Longhui Wei
Anxiang Xiao
Lingxi Xie
Xin Chen
Xiaopeng Zhang
Qi Tian
24
62
0
25 Mar 2020
Meta Pseudo Labels
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
262
656
0
23 Mar 2020
NoiseRank: Unsupervised Label Noise Reduction with Dependence Models
NoiseRank: Unsupervised Label Noise Reduction with Dependence Models
Karishma Sharma
Pinar E. Donmez
Enming Luo
Yan Liu
I. Z. Yalniz
NoLa
60
33
0
15 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
  Adversarial Robustness
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
58
63
0
02 Mar 2020
Understanding and Improving Knowledge Distillation
Understanding and Improving Knowledge Distillation
Jiaxi Tang
Rakesh Shivanna
Zhe Zhao
Dong Lin
Anima Singh
Ed H. Chi
Sagar Jain
27
129
0
10 Feb 2020
Big Transfer (BiT): General Visual Representation Learning
Big Transfer (BiT): General Visual Representation Learning
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
J. Puigcerver
Jessica Yung
Sylvain Gelly
N. Houlsby
MQ
97
1,183
0
24 Dec 2019
Self-training with Noisy Student improves ImageNet classification
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
55
2,362
0
11 Nov 2019
And the Bit Goes Down: Revisiting the Quantization of Neural Networks
And the Bit Goes Down: Revisiting the Quantization of Neural Networks
Pierre Stock
Armand Joulin
Rémi Gribonval
Benjamin Graham
Hervé Jégou
MQ
34
149
0
12 Jul 2019
Fixing the train-test resolution discrepancy
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
52
420
0
14 Jun 2019
Training Data Subset Search with Ensemble Active Learning
Training Data Subset Search with Ensemble Active Learning
Kashyap Chitta
J. Álvarez
Elmar Haussmann
C. Farabet
22
13
0
29 May 2019
Local Label Propagation for Large-Scale Semi-Supervised Learning
Local Label Propagation for Large-Scale Semi-Supervised Learning
Chengxu Zhuang
Xuehao Ding
Divyanshu Murli
Daniel L. K. Yamins
SSL
30
11
0
28 May 2019
Previous
123