ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.00151
52
6
v1v2 (latest)

A Style Transfer Approach to Source Separation

1 May 2019
Shrikant Venkataramani
Efthymios Tzinis
Paris Smaragdis
    OODDRL
ArXiv (abs)PDFHTML
Abstract

Training neural networks for source separation involves presenting a mixture recording at the input of the network and updating network parameters in order to produce an output that resembles the clean source. Consequently, supervised source separation depends on the availability of paired mixture-clean training examples. In this paper, we interpret source separation as a style transfer problem. We present a variational auto-encoder network that exploits the commonality across the domain of mixtures and the domain of clean sounds and learns a shared latent representation across the two domains. Using these cycle-consistent variational auto-encoders, we learn a mapping from the mixture domain to the domain of clean sounds and perform source separation without explicitly supervising with paired training examples.

View on arXiv
Comments on this paper