ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.13335
  4. Cited By
Adversarial Balancing-based Representation Learning for Causal Effect
  Inference with Observational Data

Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data

30 April 2019
Xin Du
Lei Sun
W. Duivesteijn
Alexander G. Nikolaev
Mykola Pechenizkiy
    OOD
    CML
ArXivPDFHTML

Papers citing "Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data"

14 / 14 papers shown
Title
Defining Expertise: Applications to Treatment Effect Estimation
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
40
2
0
01 Mar 2024
Adversarially Balanced Representation for Continuous Treatment Effect
  Estimation
Adversarially Balanced Representation for Continuous Treatment Effect Estimation
Amirreza Kazemi
Martin Ester
CML
OOD
40
3
0
17 Dec 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
32
9
0
19 Nov 2023
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual
  Inference
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference
Yonghe Zhao
Q. Huang
Siwei Wu
Yun Peng
H. Sun
BDL
CML
19
0
0
02 Aug 2023
Integrating Earth Observation Data into Causal Inference: Challenges and
  Opportunities
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
CML
41
11
0
30 Jan 2023
Deep Causal Learning for Robotic Intelligence
Deep Causal Learning for Robotic Intelligence
Yong Li
CML
37
5
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Neural Causal Models for Counterfactual Identification and Estimation
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
43
32
0
30 Sep 2022
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple
  Imbalanced Treatment Effects
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects
Guanglin Zhou
Lina Yao
Xiwei Xu
Chen Wang
Liming Zhu
OOD
CML
BDL
30
2
0
13 Aug 2022
Diffusion Causal Models for Counterfactual Estimation
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
35
69
0
21 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect
  Estimation
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
24
29
0
02 Feb 2022
Cycle-Balanced Representation Learning For Counterfactual Inference
Cycle-Balanced Representation Learning For Counterfactual Inference
Guanglin Zhou
L. Yao
Xiwei Xu
Chen Wang
Liming Zhu
CML
OOD
14
12
0
29 Oct 2021
Robust Orthogonal Machine Learning of Treatment Effects
Robust Orthogonal Machine Learning of Treatment Effects
Yiyan Huang
Cheuk Hang Leung
Qi Wu
Xing Yan
OOD
CML
16
0
0
22 Mar 2021
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
719
0
12 May 2016
1