Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.13262
Cited By
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks
30 April 2019
Gauthier Gidel
Francis R. Bach
Simon Lacoste-Julien
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks"
39 / 39 papers shown
Title
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
34
0
0
28 Jan 2025
Gradient Descent Converges Linearly to Flatter Minima than Gradient Flow in Shallow Linear Networks
Pierfrancesco Beneventano
Blake Woodworth
MLT
39
1
0
15 Jan 2025
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
38
3
0
22 Sep 2024
Input Space Mode Connectivity in Deep Neural Networks
Jakub Vrabel
Ori Shem-Ur
Yaron Oz
David Krueger
56
1
0
09 Sep 2024
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
32
1
0
17 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
37
12
0
06 Jun 2024
Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion
Zhiwei Bai
Jiajie Zhao
Yaoyu Zhang
AI4CE
37
0
0
22 May 2024
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
51
1
0
21 Feb 2024
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
34
18
0
24 Jul 2023
FedBug: A Bottom-Up Gradual Unfreezing Framework for Federated Learning
Chia-Hsiang Kao
Yu-Chiang Frank Wang
FedML
26
1
0
19 Jul 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
S. Fattahi
Wei Hu
36
0
0
24 May 2023
Robust Implicit Regularization via Weight Normalization
H. Chou
Holger Rauhut
Rachel A. Ward
33
7
0
09 May 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
31
35
0
02 Apr 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
30
3
0
06 Mar 2023
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
Mo Zhou
Rong Ge
29
2
0
01 Feb 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
54
34
0
27 Jan 2023
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation
David Lipshutz
Cengiz Pehlevan
D. Chklovskii
25
11
0
21 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
31
5
0
19 Sep 2022
Provable Acceleration of Heavy Ball beyond Quadratics for a Class of Polyak-Łojasiewicz Functions when the Non-Convexity is Averaged-Out
Jun-Kun Wang
Chi-Heng Lin
Andre Wibisono
Bin Hu
32
20
0
22 Jun 2022
What do CNNs Learn in the First Layer and Why? A Linear Systems Perspective
Rhea Chowers
Yair Weiss
33
2
0
06 Jun 2022
Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
Byungchan Ko
Jungseul Ok
OnRL
27
5
0
01 Jun 2022
Lassoed Tree Boosting
Alejandro Schuler
Yi Li
Mark van der Laan
30
3
0
22 May 2022
On Regularizing Coordinate-MLPs
Sameera Ramasinghe
L. MacDonald
Simon Lucey
158
5
0
01 Feb 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
50
28
0
06 Oct 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
24
9
0
28 Jul 2021
A Mechanism for Producing Aligned Latent Spaces with Autoencoders
Saachi Jain
Adityanarayanan Radhakrishnan
Caroline Uhler
21
9
0
29 Jun 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
27
194
0
06 May 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
42
29
0
13 Jul 2020
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
35
19
0
19 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
Bregman Proximal Framework for Deep Linear Neural Networks
Mahesh Chandra Mukkamala
Felix Westerkamp
Emanuel Laude
Daniel Cremers
Peter Ochs
11
7
0
08 Oct 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
322
0
13 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
32
491
0
31 May 2019
1