ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.13006
  4. Cited By
Anytime Integrated Task and Motion Policies for Stochastic Environments

Anytime Integrated Task and Motion Policies for Stochastic Environments

30 April 2019
Naman Shah
Deepak Kala Vasudevan
Kislay Kumar
Pranav Kamojjhala
Siddharth Srivastava
ArXivPDFHTML

Papers citing "Anytime Integrated Task and Motion Policies for Stochastic Environments"

5 / 5 papers shown
Title
Beyond Task and Motion Planning: Hierarchical Robot Planning with General-Purpose Policies
Beyond Task and Motion Planning: Hierarchical Robot Planning with General-Purpose Policies
Benned Hedegaard
Ziyi Yang
Yichen Wei
Ahmed Jaafar
Stefanie Tellex
George Konidaris
Naman Shah
31
0
0
24 Apr 2025
Task and Motion Planning for Execution in the Real
Task and Motion Planning for Execution in the Real
Tianyang Pan
Rahul Shome
Lydia E. Kavraki
58
2
0
05 Jun 2024
Practice Makes Perfect: Planning to Learn Skill Parameter Policies
Practice Makes Perfect: Planning to Learn Skill Parameter Policies
Nishanth Kumar
Tom Silver
Willie McClinton
Linfeng Zhao
Stephen Proulx
Tomás Lozano-Pérez
L. Kaelbling
Jennifer Barry
59
18
0
22 Feb 2024
Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
  Planning
Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot Planning
Naman Shah
Siddharth Srivastava
27
18
0
02 Feb 2022
Extended Tree Search for Robot Task and Motion Planning
Extended Tree Search for Robot Task and Motion Planning
Tianyu Ren
Georgia Chalvatzaki
Jan Peters
6
25
0
09 Mar 2021
1