ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12901
  4. Cited By
Challenges of Real-World Reinforcement Learning

Challenges of Real-World Reinforcement Learning

29 April 2019
Gabriel Dulac-Arnold
D. Mankowitz
Todd Hester
    OffRL
ArXivPDFHTML

Papers citing "Challenges of Real-World Reinforcement Learning"

9 / 109 papers shown
Title
Scalable Multi-Task Imitation Learning with Autonomous Improvement
Scalable Multi-Task Imitation Learning with Autonomous Improvement
Avi Singh
Eric Jang
A. Irpan
Daniel Kappler
Murtaza Dalal
Sergey Levine
Mohi Khansari
Chelsea Finn
48
35
0
25 Feb 2020
Multi-Agent Connected Autonomous Driving using Deep Reinforcement
  Learning
Multi-Agent Connected Autonomous Driving using Deep Reinforcement Learning
Praveen Palanisamy
42
142
0
11 Nov 2019
IPO: Interior-point Policy Optimization under Constraints
IPO: Interior-point Policy Optimization under Constraints
Yongshuai Liu
J. Ding
Xin Liu
21
175
0
21 Oct 2019
I'm sorry Dave, I'm afraid I can't do that, Deep Q-learning from
  forbidden action
I'm sorry Dave, I'm afraid I can't do that, Deep Q-learning from forbidden action
Mathieu Seurin
Philippe Preux
Olivier Pietquin
16
12
0
04 Oct 2019
Scaling data-driven robotics with reward sketching and batch
  reinforcement learning
Scaling data-driven robotics with reward sketching and batch reinforcement learning
Serkan Cabi
Sergio Gomez Colmenarejo
Alexander Novikov
Ksenia Konyushkova
Scott E. Reed
...
David Barker
Jonathan Scholz
Misha Denil
Nando de Freitas
Ziyun Wang
OffRL
26
29
0
26 Sep 2019
RecSim: A Configurable Simulation Platform for Recommender Systems
RecSim: A Configurable Simulation Platform for Recommender Systems
Eugene Ie
Chih-Wei Hsu
Martin Mladenov
Vihan Jain
Sanmit Narvekar
Jing Wang
Rui Wu
Craig Boutilier
27
177
0
11 Sep 2019
Informed Machine Learning -- A Taxonomy and Survey of Integrating
  Knowledge into Learning Systems
Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems
Laura von Rueden
S. Mayer
Katharina Beckh
B. Georgiev
Sven Giesselbach
...
Rajkumar Ramamurthy
Michal Walczak
Jochen Garcke
Christian Bauckhage
Jannis Schuecker
34
626
0
29 Mar 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
365
11,700
0
09 Mar 2017
Previous
123