Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.12794
Cited By
Constraint-Aware Neural Networks for Riemann Problems
29 April 2019
Jim Magiera
Deep Ray
J. Hesthaven
C. Rohde
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Constraint-Aware Neural Networks for Riemann Problems"
8 / 8 papers shown
Title
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
34
43
0
09 Jul 2024
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
25
1
0
07 Aug 2023
Addressing Discontinuous Root-Finding for Subsequent Differentiability in Machine Learning, Inverse Problems, and Control
Dan Johnson
Ronald Fedkiw
AI4CE
31
2
0
21 Jun 2023
A comparison of PINN approaches for drift-diffusion equations on metric graphs
J. Blechschmidt
Jan-Frederik Pietschman
Tom-Christian Riemer
Martin Stoll
M. Winkler
18
2
0
15 May 2022
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
20
201
0
23 Feb 2022
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
19
37
0
06 Jul 2021
Structure-preserving neural networks
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
22
69
0
09 Apr 2020
Tensor Basis Gaussian Process Models of Hyperelastic Materials
A. Frankel
Reese E. Jones
L. Swiler
11
41
0
23 Dec 2019
1