ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12694
  4. Cited By
ExplaiNE: An Approach for Explaining Network Embedding-based Link
  Predictions

ExplaiNE: An Approach for Explaining Network Embedding-based Link Predictions

22 April 2019
Bo Kang
Jefrey Lijffijt
T. D. Bie
ArXivPDFHTML

Papers citing "ExplaiNE: An Approach for Explaining Network Embedding-based Link Predictions"

4 / 4 papers shown
Title
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
192
2,882
0
14 Mar 2017
node2vec: Scalable Feature Learning for Networks
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
186
10,863
0
03 Jul 2016
DeepWalk: Online Learning of Social Representations
DeepWalk: Online Learning of Social Representations
Bryan Perozzi
Rami Al-Rfou
Steven Skiena
HAI
254
9,779
0
26 Mar 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
307
7,292
0
20 Dec 2013
1