ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12654
  4. Cited By
The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph
  Partitioning

The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning

25 April 2019
Steffen Wolf
Alberto Bailoni
Constantin Pape
Nasim Rahaman
Anna Kreshuk
Ullrich Kothe
Fred Hamprecht
ArXivPDFHTML

Papers citing "The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning"

2 / 2 papers shown
Title
Anisotropic EM Segmentation by 3D Affinity Learning and Agglomeration
Anisotropic EM Segmentation by 3D Affinity Learning and Agglomeration
T. Parag
Fabian Tschopp
William Grisaitis
Srinivas C. Turaga
Xuewen Zhang
Brian Matejek
L. Kamentsky
J. Lichtman
Hanspeter Pfister
42
15
0
27 Jul 2017
FusionNet: A deep fully residual convolutional neural network for image
  segmentation in connectomics
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics
Tran Minh Quan
David Grant Colburn Hildebrand
W. Jeong
24
236
0
16 Dec 2016
1