Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.12191
Cited By
Linearized two-layers neural networks in high dimension
27 April 2019
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Linearized two-layers neural networks in high dimension"
34 / 34 papers shown
Title
Fine-Grained Verifiers: Preference Modeling as Next-token Prediction in Vision-Language Alignment
Chenhang Cui
An Zhang
Yiyang Zhou
Zhaorun Chen
Gelei Deng
Huaxiu Yao
Tat-Seng Chua
110
5
0
18 Oct 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
119
1
0
18 Apr 2024
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
66
6
0
20 Jul 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
118
15
0
11 May 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
89
33
0
28 Feb 2023
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
54
4
0
06 Sep 2022
On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
Tengyuan Liang
Alexander Rakhlin
Xiyu Zhai
44
29
0
27 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
73
631
0
14 Aug 2019
Limitations of Lazy Training of Two-layers Neural Networks
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
45
143
0
21 Jun 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
Matthieu Wyart
79
17
0
19 Jun 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
53
182
0
01 Apr 2019
Two models of double descent for weak features
M. Belkin
Daniel J. Hsu
Ji Xu
80
375
0
18 Mar 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
153
1,089
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
68
277
0
16 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
142
966
0
24 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
174
1,628
0
28 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
89
823
0
19 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
133
448
0
21 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
190
1,457
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
143
1,133
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
155
1,261
0
04 Oct 2018
Does data interpolation contradict statistical optimality?
M. Belkin
Alexander Rakhlin
Alexandre B. Tsybakov
64
218
0
25 Jun 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
193
3,160
0
20 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
157
731
0
24 May 2018
Gradient Descent for One-Hidden-Layer Neural Networks: Polynomial Convergence and SQ Lower Bounds
Santosh Vempala
John Wilmes
MLT
69
50
0
07 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
76
855
0
18 Apr 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
44
418
0
05 Feb 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
83
908
0
27 Oct 2017
The Landscape of Empirical Risk for Non-convex Losses
Song Mei
Yu Bai
Andrea Montanari
52
312
0
22 Jul 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
60
330
0
14 Feb 2016
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
121
703
0
30 Dec 2014
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
116
282
0
09 Aug 2012
On information plus noise kernel random matrices
N. Karoui
54
65
0
11 Nov 2010
The spectrum of kernel random matrices
N. Karoui
131
223
0
04 Jan 2010
1