ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.10939
  4. Cited By
Horseshoe Regularization for Machine Learning in Complex and Deep Models
v1v2 (latest)

Horseshoe Regularization for Machine Learning in Complex and Deep Models

24 April 2019
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
ArXiv (abs)PDFHTML

Papers citing "Horseshoe Regularization for Machine Learning in Complex and Deep Models"

31 / 31 papers shown
Title
False Discovery Rate Control via Frequentist-assisted Horseshoe
False Discovery Rate Control via Frequentist-assisted Horseshoe
Qiaoyu Liang
Zihan Zhu
Ziang Fu
Michael Evans
81
0
0
08 Feb 2025
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCVBDL
181
113
0
24 Jun 2019
Efficient sampling for Gaussian linear regression with arbitrary priors
Efficient sampling for Gaussian linear regression with arbitrary priors
P. R. Hahn
Jingyu He
H. Lopes
49
32
0
14 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDLUQCV
48
78
0
13 Jun 2018
Bayesian Deep Net GLM and GLMM
Bayesian Deep Net GLM and GLMM
Minh-Ngoc Tran
Nghia Nguyen
David J. Nott
Robert Kohn
BDL
116
75
0
25 May 2018
Bayesian Joint Spike-and-Slab Graphical Lasso
Bayesian Joint Spike-and-Slab Graphical Lasso
Z. Li
Tyler H. McCormick
S. Clark
59
35
0
18 May 2018
Model Selection in Bayesian Neural Networks via Horseshoe Priors
Model Selection in Bayesian Neural Networks via Horseshoe Priors
S. Ghosh
Finale Doshi-Velez
BDL
67
120
0
29 May 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCVBDL
166
481
0
24 May 2017
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a
  Scalable MCMC Algorithm for the Horseshoe Prior
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
67
24
0
02 May 2017
Horseshoe Regularization for Feature Subset Selection
Horseshoe Regularization for Feature Subset Selection
A. Bhadra
J. Datta
Nicholas G. Polson
Brandon T. Willard
38
9
0
23 Feb 2017
Achieving Shrinkage in a Time-Varying Parameter Model Framework
Achieving Shrinkage in a Time-Varying Parameter Model Framework
A. Bitto
Sylvia Fruhwirth-Schnatter
37
157
0
04 Nov 2016
GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit
  model
GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model
Alexander Terenin
Shawfeng Dong
D. Draper
44
40
0
15 Aug 2016
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
74
74
0
07 Jul 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Prediction risk for the horseshoe regression
Prediction risk for the horseshoe regression
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
Brandon T. Willard
133
16
0
16 May 2016
Global-Local Mixtures
Global-Local Mixtures
A. Bhadra
J. Datta
Nicholas G. Polson
Brandon T. Willard
24
5
0
26 Apr 2016
Variational Inference for Sparse and Undirected Models
Variational Inference for Sparse and Undirected Models
John Ingraham
D. Marks
90
8
0
11 Feb 2016
DOLDA - a regularized supervised topic model for high-dimensional
  multi-class regression
DOLDA - a regularized supervised topic model for high-dimensional multi-class regression
Maans Magnusson
Leif Jonsson
M. Villani
27
15
0
31 Jan 2016
Conditions for Posterior Contraction in the Sparse Normal Means Problem
Conditions for Posterior Contraction in the Sparse Normal Means Problem
S. V. D. Pas
J. Salomond
Johannes Schmidt-Hieber
52
65
0
08 Oct 2015
On the contraction properties of some high-dimensional quasi-posterior
  distributions
On the contraction properties of some high-dimensional quasi-posterior distributions
Yves F. Atchadé
89
39
0
31 Aug 2015
A simple sampler for the horseshoe estimator
A simple sampler for the horseshoe estimator
E. Makalic
Daniel F. Schmidt
51
238
0
17 Aug 2015
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression
Fast sampling with Gaussian scale-mixture priors in high-dimensional regression
A. Bhattacharya
Antik Chakraborty
Bani Mallick
68
180
0
15 Jun 2015
The Horseshoe+ Estimator of Ultra-Sparse Signals
The Horseshoe+ Estimator of Ultra-Sparse Signals
A. Bhadra
J. Datta
Nicholas G. Polson
Brandon T. Willard
75
168
0
02 Feb 2015
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
79
169
0
01 Apr 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Asymptotic Properties of Bayes Risk of a General Class of Shrinkage
  Priors in Multiple Hypothesis Testing Under Sparsity
Asymptotic Properties of Bayes Risk of a General Class of Shrinkage Priors in Multiple Hypothesis Testing Under Sparsity
P. Ghosh
Xueying Tang
M. Ghosh
A. Chakrabarti
70
53
0
28 Oct 2013
Needles and Straw in a Haystack: Posterior concentration for possibly
  sparse sequences
Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences
I. Castillo
A. van der Vaart
136
251
0
06 Nov 2012
Generalized Beta Mixtures of Gaussians
Generalized Beta Mixtures of Gaussians
Artin Armagan
David B. Dunson
M. Clyde
84
153
0
25 Jul 2011
Data augmentation for non-Gaussian regression models using variance-mean
  mixtures
Data augmentation for non-Gaussian regression models using variance-mean mixtures
Nicholas G. Polson
James G. Scott
104
45
0
28 Mar 2011
Parameter expansion in local-shrinkage models
Parameter expansion in local-shrinkage models
James G. Scott
52
16
0
25 Oct 2010
Sparsistency and rates of convergence in large covariance matrix
  estimation
Sparsistency and rates of convergence in large covariance matrix estimation
Clifford Lam
Jianqing Fan
233
610
0
26 Nov 2007
1