Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.09406
Cited By
DeepMoD: Deep learning for Model Discovery in noisy data
20 April 2019
G. Both
Subham Choudhury
P. Sens
R. Kusters
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DeepMoD: Deep learning for Model Discovery in noisy data"
6 / 6 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
136
0
0
02 Mar 2025
DGenNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
82
1
0
10 Feb 2025
ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification
Siva Viknesh
Younes Tatari
Amirhossein Arzani
66
2
0
21 Oct 2024
Stability selection enables robust learning of partial differential equations from limited noisy data
Suryanarayana Maddu
B. Cheeseman
I. Sbalzarini
Christian L. Müller
40
19
0
17 Jul 2019
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
58
611
0
28 Nov 2017
Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data
Anuj Karpatne
G. Atluri
James H. Faghmous
M. Steinbach
A. Banerjee
A. Ganguly
Shashi Shekhar
N. Samatova
Vipin Kumar
AI4CE
49
978
0
27 Dec 2016
1