ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.08875
  4. Cited By
DScribe: Library of Descriptors for Machine Learning in Materials
  Science

DScribe: Library of Descriptors for Machine Learning in Materials Science

18 April 2019
Lauri Himanen
M. Jäger
Eiaki V. Morooka
F. F. Canova
Y. S. Ranawat
D. Gao
Patrick Rinke
A. Foster
ArXivPDFHTML

Papers citing "DScribe: Library of Descriptors for Machine Learning in Materials Science"

25 / 25 papers shown
Title
Quotient Complex Transformer (QCformer) for Perovskite Data Analysis
Quotient Complex Transformer (QCformer) for Perovskite Data Analysis
Xinyu You
Xiang Liu
Chuan-Shen Hu
Kelin Xia
Tze Chien Sum
29
0
0
14 May 2025
Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
Raffaele Cheula
Mie Andersen
55
0
0
01 May 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
64
4
0
12 Mar 2025
MatterChat: A Multi-Modal LLM for Material Science
MatterChat: A Multi-Modal LLM for Material Science
Yingheng Tang
Wenbin Xu
Jie Cao
Jianzhu Ma
Weilu Gao
Steve Farrell
Benjamin Erichson
Michael W. Mahoney
Andy Nonaka
113
3
0
18 Feb 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
42
0
0
10 Jan 2025
OmniXAS: A Universal Deep-Learning Framework for Materials X-ray Absorption Spectra
OmniXAS: A Universal Deep-Learning Framework for Materials X-ray Absorption Spectra
Shubha R. Kharel
Fanchen Meng
Xiaohui Qu
Matthew R. Carbone
Deyu Lu
39
0
0
29 Sep 2024
Multitask methods for predicting molecular properties from heterogeneous
  data
Multitask methods for predicting molecular properties from heterogeneous data
Katharine Fisher
Michael Herbst
Youssef Marzouk
26
6
0
31 Jan 2024
From structure mining to unsupervised exploration of atomic octahedral
  networks
From structure mining to unsupervised exploration of atomic octahedral networks
R. Xian
Ryan J. Morelock
I. Hadar
C. Musgrave
Christopher Sutton
13
0
0
21 Jun 2023
InstructBio: A Large-scale Semi-supervised Learning Paradigm for
  Biochemical Problems
InstructBio: A Large-scale Semi-supervised Learning Paradigm for Biochemical Problems
Fang Wu
Huiling Qin
Siyuan Li
Stan Z. Li
Xianyuan Zhan
Jinbo Xu
34
5
0
08 Apr 2023
Machine learning for phase ordering dynamics of charge density waves
Machine learning for phase ordering dynamics of charge density waves
Chen Cheng
Sheng Zhang
Gia-Wei Chern
14
10
0
06 Mar 2023
Capturing long-range interaction with reciprocal space neural network
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
34
11
0
30 Nov 2022
MOFormer: Self-Supervised Transformer model for Metal-Organic Framework
  Property Prediction
MOFormer: Self-Supervised Transformer model for Metal-Organic Framework Property Prediction
Zhonglin Cao
Rishikesh Magar
Yuyang Wang
A. Farimani
AI4CE
28
88
0
25 Oct 2022
Cluster-based multidimensional scaling embedding tool for data
  visualization
Cluster-based multidimensional scaling embedding tool for data visualization
Patricia Hernández-León
M. A. Caro
52
6
0
14 Sep 2022
A smooth basis for atomistic machine learning
A smooth basis for atomistic machine learning
Filippo Bigi
Kevin K. Huguenin-Dumittan
Michele Ceriotti
D. Manolopoulos
35
6
0
05 Sep 2022
Lagrangian Density Space-Time Deep Neural Network Topology
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
25
1
0
30 Jun 2022
Machine Learning Diffusion Monte Carlo Energies
Machine Learning Diffusion Monte Carlo Energies
Kevin Ryczko
J. Krogel
Isaac Tamblyn
DiffM
16
14
0
09 May 2022
Complex Spin Hamiltonian Represented by Artificial Neural Network
Complex Spin Hamiltonian Represented by Artificial Neural Network
Hongyu Yu
Changsong Xu
Feng Lou
L. Bellaiche
Zhenpeng Hu
X. Gong
H. Xiang
39
15
0
02 Oct 2021
Surrogate-Based Black-Box Optimization Method for Costly Molecular
  Properties
Surrogate-Based Black-Box Optimization Method for Costly Molecular Properties
J. Leguy
Thomas Cauchy
B. Duval
Benoit Da Mota
AI4CE
19
0
0
01 Oct 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
172
17
0
23 Apr 2021
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
31
60
0
27 Jan 2021
Investigating 3D Atomic Environments for Enhanced QSAR
Investigating 3D Atomic Environments for Enhanced QSAR
William McCorkindale
C. Poelking
A. Lee
17
3
0
24 Oct 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
41
891
0
14 Oct 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
37
13
0
28 Jun 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
30
92
0
26 Mar 2020
ML4Chem: A Machine Learning Package for Chemistry and Materials Science
ML4Chem: A Machine Learning Package for Chemistry and Materials Science
Muammar El Khatib
W. A. Jong
VLM
23
6
0
02 Mar 2020
1