ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.06984
  4. Cited By
Depth Separations in Neural Networks: What is Actually Being Separated?

Depth Separations in Neural Networks: What is Actually Being Separated?

15 April 2019
Itay Safran
Ronen Eldan
Ohad Shamir
    MDE
ArXivPDFHTML

Papers citing "Depth Separations in Neural Networks: What is Actually Being Separated?"

10 / 10 papers shown
Title
On the Depth of Monotone ReLU Neural Networks and ICNNs
On the Depth of Monotone ReLU Neural Networks and ICNNs
Egor Bakaev
Florestan Brunck
Christoph Hertrich
Daniel Reichman
Amir Yehudayoff
26
0
0
09 May 2025
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
38
13
0
11 May 2023
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice
  Polytopes
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes
Christian Haase
Christoph Hertrich
Georg Loho
31
21
0
24 Feb 2023
Transformers Learn Shortcuts to Automata
Transformers Learn Shortcuts to Automata
Bingbin Liu
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Cyril Zhang
OffRL
LRM
46
155
0
19 Oct 2022
Random Feature Amplification: Feature Learning and Generalization in
  Neural Networks
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Interplay between depth of neural networks and locality of target
  functions
Interplay between depth of neural networks and locality of target functions
Takashi Mori
Masakuni Ueda
22
0
0
28 Jan 2022
The Connection Between Approximation, Depth Separation and Learnability
  in Neural Networks
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
21
20
0
31 Jan 2021
Size and Depth Separation in Approximating Benign Functions with Neural
  Networks
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
21
7
0
30 Jan 2021
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
  with $ \ell^1 $ and $ \ell^0 $ Controls
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with ℓ1 \ell^1 ℓ1 and ℓ0 \ell^0 ℓ0 Controls
Jason M. Klusowski
Andrew R. Barron
130
142
0
26 Jul 2016
Benefits of depth in neural networks
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
1