ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.05747
  4. Cited By
Malware Evasion Attack and Defense
v1v2 (latest)

Malware Evasion Attack and Defense

7 April 2019
Yonghong Huang
Utkarsh Verma
Celeste Fralick
G. Infante-Lopez
B. Kumar
Carl Woodward
    AAML
ArXiv (abs)PDFHTML

Papers citing "Malware Evasion Attack and Defense"

19 / 19 papers shown
Title
Explaining Vulnerabilities of Deep Learning to Adversarial Malware
  Binaries
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries
Christian Scano
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
59
131
0
11 Jan 2019
EMBER: An Open Dataset for Training Static PE Malware Machine Learning
  Models
EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models
Hyrum S. Anderson
P. Roth
56
479
0
12 Apr 2018
Adversarial Malware Binaries: Evading Deep Learning for Malware
  Detection in Executables
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
Bojan Kolosnjaji
Ambra Demontis
Battista Biggio
Davide Maiorca
Giorgio Giacinto
Claudia Eckert
Fabio Roli
AAML
70
318
0
12 Mar 2018
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial
  Examples
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
Felix Kreuk
A. Barak
Shir Aviv-Reuven
Moran Baruch
Benny Pinkas
Joseph Keshet
AAML
59
118
0
13 Feb 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
135
1,409
0
08 Dec 2017
Malware Detection by Eating a Whole EXE
Malware Detection by Eating a Whole EXE
Edward Raff
Jon Barker
Jared Sylvester
Robert Brandon
Bryan Catanzaro
Charles K. Nicholas
81
546
0
25 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
319
12,138
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
131
1,867
0
20 May 2017
The Space of Transferable Adversarial Examples
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAMLSILM
102
558
0
11 Apr 2017
Enhancing Robustness of Machine Learning Systems via Data
  Transformations
Enhancing Robustness of Machine Learning Systems via Data Transformations
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
74
231
0
09 Apr 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
Basel Alomair
AAML
143
1,741
0
08 Nov 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
86
514
0
03 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
282
8,587
0
16 Aug 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAUAAML
76
3,685
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
117
3,968
0
24 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
118
3,077
0
14 Nov 2015
Deep Neural Network Based Malware Detection Using Two Dimensional Binary
  Program Features
Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features
Joshua Saxe
Konstantin Berlin
66
623
0
13 Aug 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,129
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
1