Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.04861
Cited By
Universal Lipschitz Approximation in Bounded Depth Neural Networks
9 April 2019
Jérémy E. Cohen
Todd P. Huster
Ravid Cohen
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universal Lipschitz Approximation in Bounded Depth Neural Networks"
8 / 8 papers shown
Title
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
29
0
0
10 Nov 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
61
10
0
05 Jul 2023
Data Topology-Dependent Upper Bounds of Neural Network Widths
Sangmin Lee
Jong Chul Ye
33
0
0
25 May 2023
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
50
16
0
13 Apr 2022
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
L*ReLU: Piece-wise Linear Activation Functions for Deep Fine-grained Visual Categorization
Mina Basirat
P. Roth
19
8
0
27 Oct 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
251
1,842
0
03 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
312
3,115
0
04 Nov 2016
1