Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.04058
Cited By
A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations
2 April 2019
R. Tipireddy
P. Perdikaris
P. Stinis
A. Tartakovsky
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations"
6 / 6 papers shown
Title
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
79
59
0
09 Dec 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
455
5,168
0
19 Jun 2018
Physics-constrained, data-driven discovery of coarse-grained dynamics
L. Felsberger
P. Koutsourelakis
AI4CE
50
19
0
11 Feb 2018
Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
M. Raissi
P. Perdikaris
George Karniadakis
PINN
152
266
0
04 Jan 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
96
615
0
28 Nov 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
97
2,067
0
24 Aug 2017
1