Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.03867
Cited By
Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability
8 April 2019
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying Model Complexity via Functional Decomposition for Better Post-Hoc Interpretability"
10 / 10 papers shown
Title
Statistical inference using machine learning and classical techniques based on accumulated local effects (ALE)
Chitu Okoli
18
3
0
15 Oct 2023
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
Lennart Schneider
B. Bischl
Janek Thomas
30
6
0
17 Jul 2023
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives
Matthias Feurer
Katharina Eggensperger
Eddie Bergman
Florian Pfisterer
B. Bischl
Frank Hutter
51
5
0
08 Dec 2022
Comparing Explanation Methods for Traditional Machine Learning Models Part 2: Quantifying Model Explainability Faithfulness and Improvements with Dimensionality Reduction
Montgomery Flora
Corey K. Potvin
A. McGovern
Shawn Handler
FAtt
28
4
0
18 Nov 2022
Explainability in Process Outcome Prediction: Guidelines to Obtain Interpretable and Faithful Models
Alexander Stevens
Johannes De Smedt
XAI
FaML
19
12
0
30 Mar 2022
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
28
396
0
19 Oct 2020
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
31
135
0
08 Jul 2020
Towards Quantification of Explainability in Explainable Artificial Intelligence Methods
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
XAI
22
42
0
22 Nov 2019
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Summer Devlin
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
19
14
0
18 May 2019
1