ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.03421
  4. Cited By
Online Trajectory Generation of a MAV for Chasing a Moving Target in 3D
  Dense Environments

Online Trajectory Generation of a MAV for Chasing a Moving Target in 3D Dense Environments

6 April 2019
B. Jeon
H.Jin Kim
ArXivPDFHTML

Papers citing "Online Trajectory Generation of a MAV for Chasing a Moving Target in 3D Dense Environments"

3 / 3 papers shown
Title
Autonomous drone cinematographer: Using artistic principles to create
  smooth, safe, occlusion-free trajectories for aerial filming
Autonomous drone cinematographer: Using artistic principles to create smooth, safe, occlusion-free trajectories for aerial filming
Rogerio Bonatti
Yanfu Zhang
Sanjiban Choudhury
Wenshan Wang
Sebastian Scherer
VGen
33
53
0
28 Aug 2018
Robust Visual Tracking via Hierarchical Convolutional Features
Robust Visual Tracking via Hierarchical Convolutional Features
Chao Ma
Jia-Bin Huang
Xiaokang Yang
Ming-Hsuan Yang
49
184
0
12 Jul 2017
Sampling-based Algorithms for Optimal Motion Planning
Sampling-based Algorithms for Optimal Motion Planning
S. Karaman
Emilio Frazzoli
97
4,675
0
05 May 2011
1