Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.02323
Cited By
v1
v2
v3 (latest)
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
4 April 2019
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations"
32 / 32 papers shown
Title
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Indu Panigrahi
Sunnie S. Y. Kim
Amna Liaqat
Rohan Jinturkar
Olga Russakovsky
Ruth C. Fong
Parastoo Abtahi
FAtt
HAI
237
1
0
14 Apr 2025
The Role of Domain Expertise in User Trust and the Impact of First Impressions with Intelligent Systems
Mahsan Nourani
J. King
Eric D. Ragan
73
100
0
20 Aug 2020
Analyzing the Noise Robustness of Deep Neural Networks
Kelei Cao
Mengchen Liu
Hang Su
Jing Wu
Jun Zhu
Shixia Liu
AAML
127
90
0
26 Jan 2020
GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation
Minsuk Kahng
Nikhil Thorat
Duen Horng Chau
F. Viégas
Martin Wattenberg
HAI
GAN
55
173
0
05 Sep 2018
Choose Your Neuron: Incorporating Domain Knowledge through Neuron-Importance
Ramprasaath R. Selvaraju
Prithvijit Chattopadhyay
Mohamed Elhoseiny
Tilak Sharma
Dhruv Batra
Devi Parikh
Stefan Lee
81
37
0
08 Aug 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
112
1,863
0
31 May 2018
Taskonomy: Disentangling Task Transfer Learning
Amir Zamir
Alexander Sax
Bokui (William) Shen
Leonidas Guibas
Jitendra Malik
Silvio Savarese
126
1,222
0
23 Apr 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
85
227
0
19 Feb 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes
John Healy
James Melville
202
9,479
0
09 Feb 2018
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Fred Hohman
Minsuk Kahng
Robert S. Pienta
Duen Horng Chau
OOD
HAI
91
541
0
21 Jan 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
80
264
0
10 Jan 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
242
1,849
0
30 Nov 2017
Do Convolutional Neural Networks Learn Class Hierarchy?
B. Alsallakh
Amin Jourabloo
Mao Ye
Xiaoming Liu
Liu Ren
186
214
0
17 Oct 2017
Direct-Manipulation Visualization of Deep Networks
D. Smilkov
Shan Carter
D. Sculley
F. Viégas
Martin Wattenberg
FAtt
AI4CE
58
140
0
12 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,271
0
24 Jun 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
210
2,236
0
12 Jun 2017
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
79
341
0
16 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
158
1,526
1
19 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
83
1,525
0
11 Apr 2017
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
Minsuk Kahng
Pierre Yves Andrews
Aditya Kalro
Duen Horng Chau
HAI
75
324
0
06 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
193
6,024
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
410
3,820
0
28 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
335
20,110
0
07 Oct 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,708
0
10 Jun 2016
Towards Better Analysis of Deep Convolutional Neural Networks
Mengchen Liu
Jiaxin Shi
Zerui Li
Chongxuan Li
Jun Zhu
Shixia Liu
HAI
117
477
0
24 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
494
43,698
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,529
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,615
0
01 Sep 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,321
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
603
15,907
0
12 Nov 2013
1