Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.01681
Cited By
Augmented Neural ODEs
2 April 2019
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Augmented Neural ODEs"
50 / 149 papers shown
Title
Liquid Structural State-Space Models
Ramin Hasani
Mathias Lechner
Tsun-Hsuan Wang
Makram Chahine
Alexander Amini
Daniela Rus
AI4TS
107
98
0
26 Sep 2022
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret
David M. Blei
BDL
27
11
0
21 Sep 2022
Prediction-based One-shot Dynamic Parking Pricing
Seoyoung Hong
H. Shin
Jeongwhan Choi
Noseong Park
38
5
0
30 Aug 2022
Understanding Adversarial Robustness of Vision Transformers via Cauchy Problem
Zheng Wang
Wenjie Ruan
ViT
42
8
0
01 Aug 2022
Reachability Analysis of a General Class of Neural Ordinary Differential Equations
Diego Manzanas Lopez
Patrick Musau
Nathaniel P. Hamilton
Taylor T. Johnson
25
14
0
13 Jul 2022
Learning the parameters of a differential equation from its trajectory via the adjoint equation
I. Fekete
A. Molnár
P. Simon
13
0
0
17 Jun 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
Mihaly Petreczky
39
1
0
16 Jun 2022
On the balance between the training time and interpretability of neural ODE for time series modelling
Yakov Golovanev
A. Hvatov
AI4TS
22
1
0
07 Jun 2022
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
40
25
0
29 May 2022
Standalone Neural ODEs with Sensitivity Analysis
Rym Jaroudi
Lukáš Malý
Gabriel Eilertsen
B. Johansson
Jonas Unger
George Baravdish
23
0
0
27 May 2022
Deep Equilibrium Optical Flow Estimation
Shaojie Bai
Zhengyang Geng
Yash Savani
J. Zico Kolter
49
67
0
18 Apr 2022
Optimizing differential equations to fit data and predict outcomes
S. Frank
33
4
0
16 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
37
84
0
13 Apr 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei Chen
Jian Xu
Delu Zeng
37
7
0
19 Mar 2022
A Neural Ordinary Differential Equation Model for Visualizing Deep Neural Network Behaviors in Multi-Parametric MRI based Glioma Segmentation
Zhenyu Yang
Zongsheng Hu
H. Ji
Kyle J. Lafata
Scott Floyd
F. Yin
Cong Wang
29
14
0
01 Mar 2022
Learning POD of Complex Dynamics Using Heavy-ball Neural ODEs
Justin Baker
E. Cherkaev
A. Narayan
Bao Wang
AI4CE
24
4
0
24 Feb 2022
Learning via nonlinear conjugate gradients and depth-varying neural ODEs
George Baravdish
Gabriel Eilertsen
Rym Jaroudi
B. Johansson
Lukávs Malý
Jonas Unger
24
3
0
11 Feb 2022
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
21
10
0
11 Feb 2022
Universality of parametric Coupling Flows over parametric diffeomorphisms
Junlong Lyu
Zhitang Chen
Chang Feng
Wenjing Cun
Shengyu Zhu
Yanhui Geng
Zhijie Xu
Yuxiao Chen
22
3
0
07 Feb 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs
I. D. Rodriguez
Aaron D. Ames
Yisong Yue
35
51
0
05 Feb 2022
Imbedding Deep Neural Networks
A. Corbett
D. Kangin
AI4TS
30
2
0
31 Jan 2022
Path differentiability of ODE flows
S. Marx
Edouard Pauwels
19
2
0
11 Jan 2022
GOPHER: Categorical probabilistic forecasting with graph structure via local continuous-time dynamics
Ke Alexander Wang
Danielle C. Maddix
Yuyang Wang
AI4CE
33
1
0
18 Dec 2021
Global convergence of ResNets: From finite to infinite width using linear parameterization
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
16
12
0
10 Dec 2021
Joint inference and input optimization in equilibrium networks
Swaminathan Gurumurthy
Shaojie Bai
Zachary Manchester
J. Zico Kolter
34
19
0
25 Nov 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
34
3
0
25 Nov 2021
Physics-informed neural networks via stochastic Hamiltonian dynamics learning
Minh Nguyen
Chandrajit Bajaj
21
1
0
15 Nov 2021
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems
Andreas Schlaginhaufen
Philippe Wenk
Andreas Krause
Florian Dorfler
35
16
0
27 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
40
70
0
25 Oct 2021
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
37
77
0
22 Oct 2021
Signature-Graph Networks
Ali Hamdi
Flora D. Salim
D. Kim
Xiaojun Chang
21
1
0
22 Oct 2021
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
45
56
0
10 Oct 2021
Modular Neural Ordinary Differential Equations
Max Zhu
P. Lio
Jacob Moss
PINN
37
2
0
15 Sep 2021
Multiple shooting for training neural differential equations on time series
Evren Mert Turan
J. Jäschke
AI4TS
45
23
0
14 Sep 2021
GrADE: A graph based data-driven solver for time-dependent nonlinear partial differential equations
Y. Kumar
S. Chakraborty
32
8
0
24 Aug 2021
m-RevNet: Deep Reversible Neural Networks with Momentum
Duo Li
Shangqi Gao
36
5
0
12 Aug 2021
LightMove: A Lightweight Next-POI Recommendation for Taxicab Rooftop Advertising
Jinsung Jeon
Soyoung Kang
Minju Jo
Seunghyeon Cho
Noseong Park
Seonghoon Kim
Chiyoung Song
28
16
0
11 Aug 2021
LT-OCF: Learnable-Time ODE-based Collaborative Filtering
Jeongwhan Choi
Jinsung Jeon
Noseong Park
32
30
0
08 Aug 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
32
43
0
16 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
46
65
0
02 Jul 2021
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
Chen Dun
Cameron R. Wolfe
C. Jermaine
Anastasios Kyrillidis
26
21
0
02 Jul 2021
Stabilizing Equilibrium Models by Jacobian Regularization
Shaojie Bai
V. Koltun
J. Zico Kolter
35
57
0
28 Jun 2021
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
44
43
0
23 Jun 2021
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
43
24
0
23 Jun 2021
GRAND: Graph Neural Diffusion
B. Chamberlain
J. Rowbottom
Maria I. Gorinova
Stefan Webb
Emanuele Rossi
M. Bronstein
GNN
54
254
0
21 Jun 2021
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
34
8
0
21 Jun 2021
Stateful ODE-Nets using Basis Function Expansions
A. Queiruga
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
27
16
0
21 Jun 2021
Previous
1
2
3
Next