ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.01561
  4. Cited By
Analyzing Learned Molecular Representations for Property Prediction

Analyzing Learned Molecular Representations for Property Prediction

2 April 2019
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
Hua Gao
A. Guzman-Perez
Timothy Hopper
Brian P. Kelley
M. Mathea
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
ArXivPDFHTML

Papers citing "Analyzing Learned Molecular Representations for Property Prediction"

28 / 128 papers shown
Title
Few-shot Conformal Prediction with Auxiliary Tasks
Few-shot Conformal Prediction with Auxiliary Tasks
Adam Fisch
Tal Schuster
Tommi Jaakkola
Regina Barzilay
184
53
0
17 Feb 2021
Molecular machine learning with conformer ensembles
Molecular machine learning with conformer ensembles
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
20
49
0
15 Dec 2020
Explanation from Specification
Explanation from Specification
Harish Naik
Gyorgy Turán
XAI
27
0
0
13 Dec 2020
Accelerating high-throughput virtual screening through molecular
  pool-based active learning
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
87
143
0
13 Dec 2020
Advanced Graph and Sequence Neural Networks for Molecular Property
  Prediction and Drug Discovery
Advanced Graph and Sequence Neural Networks for Molecular Property Prediction and Drug Discovery
Zhengyang Wang
Meng Liu
Youzhi Luo
Zhao Xu
Yaochen Xie
...
Lei Cai
Q. Qi
Zhuoning Yuan
Tianbao Yang
Shuiwang Ji
36
100
0
02 Dec 2020
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De
  Novo Drug Design
RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De Novo Drug Design
Cheng-Hao Liu
Maksym Korablyov
Stanislaw Jastrzebski
Pawel Wlodarczyk-Pruszynski
Yoshua Bengio
Marwin H. S. Segler
GNN
32
16
0
25 Nov 2020
Message Passing Networks for Molecules with Tetrahedral Chirality
Message Passing Networks for Molecules with Tetrahedral Chirality
L. Pattanaik
O. Ganea
Ian Coley
K. Jensen
W. Green
Connor W. Coley
GNN
19
23
0
24 Nov 2020
Discovering Synergistic Drug Combinations for COVID with Biological
  Bottleneck Models
Discovering Synergistic Drug Combinations for COVID with Biological Bottleneck Models
Wengong Jin
Regina Barzilay
Tommi Jaakkola
19
4
0
09 Nov 2020
RetroXpert: Decompose Retrosynthesis Prediction like a Chemist
RetroXpert: Decompose Retrosynthesis Prediction like a Chemist
Chao-chao Yan
Qianggang Ding
P. Zhao
Shuangjia Zheng
Jinyu Yang
Yang Yu
Junzhou Huang
25
107
0
04 Nov 2020
Investigating 3D Atomic Environments for Enhanced QSAR
Investigating 3D Atomic Environments for Enhanced QSAR
William McCorkindale
C. Poelking
A. Lee
17
3
0
24 Oct 2020
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular
  Property Prediction
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction
Seyone Chithrananda
Gabriel Grand
Bharath Ramsundar
AI4CE
37
389
0
19 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
21
23
0
02 Oct 2020
Deep Learning in Protein Structural Modeling and Design
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
29
159
0
16 Jul 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
24
214
0
15 Jul 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
30
13
0
28 Jun 2020
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Yu Rong
Yatao Bian
Tingyang Xu
Wei-yang Xie
Ying Wei
Wenbing Huang
Junzhou Huang
AI4CE
21
25
0
18 Jun 2020
Learning Graph Models for Retrosynthesis Prediction
Learning Graph Models for Retrosynthesis Prediction
Vignesh Ram Somnath
Charlotte Bunne
Connor W. Coley
Andreas Krause
Regina Barzilay
27
90
0
12 Jun 2020
Adaptive Invariance for Molecule Property Prediction
Adaptive Invariance for Molecule Property Prediction
Wengong Jin
Regina Barzilay
Tommi Jaakkola
13
7
0
05 May 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
30
2,652
0
02 May 2020
DeepPurpose: a Deep Learning Library for Drug-Target Interaction
  Prediction
DeepPurpose: a Deep Learning Library for Drug-Target Interaction Prediction
Kexin Huang
Tianfan Fu
Lucas Glass
Marinka Zitnik
Cao Xiao
Jimeng Sun
VLM
27
17
0
19 Apr 2020
Autonomous discovery in the chemical sciences part II: Outlook
Autonomous discovery in the chemical sciences part II: Outlook
Connor W. Coley
Natalie S. Eyke
K. Jensen
29
171
0
30 Mar 2020
Neural Message Passing on High Order Paths
Neural Message Passing on High Order Paths
Daniel Flam-Shepherd
Tony C Wu
Pascal Friederich
Alán Aspuru-Guzik
GNN
AI4CE
24
49
0
24 Feb 2020
Molecule Attention Transformer
Molecule Attention Transformer
Lukasz Maziarka
Tomasz Danel
Slawomir Mucha
Krzysztof Rataj
Jacek Tabor
Stanislaw Jastrzebski
19
167
0
19 Feb 2020
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
Amanda J. Minnich
K. McLoughlin
Margaret J. Tse
Jason Deng
Andrew Weber
...
Bharath Ramsundar
T. Rush
Stacie Calad-Thomson
J. Brase
Jonathan E. Allen
24
68
0
13 Nov 2019
Deep Learning for Automated Classification and Characterization of
  Amorphous Materials
Deep Learning for Automated Classification and Characterization of Amorphous Materials
K. Swanson
Shubhendu Trivedi
Joshua Lequieu
Kyle Swanson
Risi Kondor
24
37
0
10 Sep 2019
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
242
1,780
0
02 Mar 2017
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
280
1,401
0
01 Dec 2016
Previous
123