Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.00687
Cited By
v1
v2
v3
v4 (latest)
On the Power and Limitations of Random Features for Understanding Neural Networks
1 April 2019
Gilad Yehudai
Ohad Shamir
MLT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Power and Limitations of Random Features for Understanding Neural Networks"
50 / 91 papers shown
Title
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
138
0
0
13 May 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
154
1
0
10 Jan 2025
Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression
Aku Kammonen
Anamika Pandey
E. von Schwerin
Raúl Tempone
76
0
0
08 Oct 2024
Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control
Andrew G. Lamperski
Tyler Lekang
53
3
0
25 Mar 2024
Polynomially Over-Parameterized Convolutional Neural Networks Contain Structured Strong Winning Lottery Tickets
A. D. Cunha
Francesco d’Amore
Emanuele Natale
MLT
66
1
0
16 Nov 2023
Orthogonal Random Features: Explicit Forms and Sharp Inequalities
N. Demni
Hachem Kadri
74
1
0
11 Oct 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
143
13
0
25 Aug 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
201
15
0
11 May 2023
Depth Separation with Multilayer Mean-Field Networks
Y. Ren
Mo Zhou
Rong Ge
OOD
85
3
0
03 Apr 2023
Function Approximation with Randomly Initialized Neural Networks for Approximate Model Reference Adaptive Control
Tyler Lekang
Andrew G. Lamperski
54
0
0
28 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
86
0
0
24 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
108
16
0
20 Feb 2023
System identification of neural systems: If we got it right, would we know?
Yena Han
T. Poggio
Brian Cheung
94
10
0
13 Feb 2023
On the symmetries in the dynamics of wide two-layer neural networks
Karl Hajjar
Lénaïc Chizat
51
11
0
16 Nov 2022
Understanding Impacts of Task Similarity on Backdoor Attack and Detection
Di Tang
Rui Zhu
Wenyuan Xu
Haixu Tang
Yi Chen
AAML
118
5
0
12 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
52
8
0
12 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
379
50
0
29 Sep 2022
Understanding Deep Neural Function Approximation in Reinforcement Learning via
ε
ε
ε
-Greedy Exploration
Fanghui Liu
Luca Viano
Volkan Cevher
116
20
0
15 Sep 2022
Differentiable Architecture Search with Random Features
Xuanyang Zhang
Yonggang Li
Xinming Zhang
Yongtao Wang
Jian Sun
70
11
0
18 Aug 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
114
133
0
18 Jul 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
Matthieu Wyart
MLT
103
26
0
24 Jun 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
113
6
0
10 Jun 2022
Long-Tailed Learning Requires Feature Learning
T. Laurent
J. V. Brecht
Xavier Bresson
VLM
93
1
0
29 May 2022
Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable
Promit Ghosal
Srinath Mahankali
Yihang Sun
MLT
64
5
0
24 May 2022
Learning a Single Neuron for Non-monotonic Activation Functions
Lei Wu
MLT
65
11
0
16 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
103
30
0
15 Feb 2022
Optimization-Based Separations for Neural Networks
Itay Safran
Jason D. Lee
387
14
0
04 Dec 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
Volkan Cevher
81
31
0
02 Nov 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
115
6
0
15 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
85
13
0
12 Oct 2021
ReLU Regression with Massart Noise
Ilias Diakonikolas
Jongho Park
Christos Tzamos
109
12
0
10 Sep 2021
A spectral-based analysis of the separation between two-layer neural networks and linear methods
Lei Wu
Jihao Long
126
8
0
10 Aug 2021
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
125
23
0
09 Aug 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
83
9
0
29 Jul 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
70
19
0
21 Jul 2021
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
103
8
0
14 Jul 2021
Memory-efficient Transformers via Top-
k
k
k
Attention
Ankit Gupta
Guy Dar
Shaya Goodman
David Ciprut
Jonathan Berant
MQ
98
60
0
13 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
76
27
0
11 Jun 2021
Neural Optimization Kernel: Towards Robust Deep Learning
Yueming Lyu
Ivor Tsang
58
1
0
11 Jun 2021
Learning a Single Neuron with Bias Using Gradient Descent
Gal Vardi
Gilad Yehudai
Ohad Shamir
MLT
89
17
0
02 Jun 2021
Properties of the After Kernel
Philip M. Long
66
29
0
21 May 2021
Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth
Keyulu Xu
Mozhi Zhang
Stefanie Jegelka
Kenji Kawaguchi
GNN
53
78
0
10 May 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
Matthieu Wyart
OOD
93
15
0
06 May 2021
Noether: The More Things Change, the More Stay the Same
Grzegorz Gluch
R. Urbanke
79
18
0
12 Apr 2021
Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks
Yuval Belfer
Amnon Geifman
Meirav Galun
Ronen Basri
74
17
0
07 Apr 2021
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
Eran Malach
Pritish Kamath
Emmanuel Abbe
Nathan Srebro
88
39
0
01 Mar 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
92
74
0
23 Feb 2021
On the Approximation Power of Two-Layer Networks of Random ReLUs
Daniel J. Hsu
Clayton Sanford
Rocco A. Servedio
Emmanouil-Vasileios Vlatakis-Gkaragkounis
63
25
0
03 Feb 2021
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
95
20
0
31 Jan 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Atsushi Nitanda
Denny Wu
Taiji Suzuki
97
29
0
31 Dec 2020
1
2
Next