Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.00575
Cited By
A Novel GAN-based Fault Diagnosis Approach for Imbalanced Industrial Time Series
1 April 2019
Wenqian Jiang
Cheng Cheng
Beitong Zhou
Guijun Ma
Ye Yuan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Novel GAN-based Fault Diagnosis Approach for Imbalanced Industrial Time Series"
8 / 8 papers shown
Title
Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA data
Wenqian Jiang
Junyang Jin
49
5
0
20 Jan 2025
AIGC for Industrial Time Series: From Deep Generative Models to Large Generative Models
Lei Ren
Haiteng Wang
Yang Tang
Yang Tang
Chunhua Yang
AI4TS
AI4CE
51
5
0
16 Jul 2024
A Comprehensive Survey of Deep Transfer Learning for Anomaly Detection in Industrial Time Series: Methods, Applications, and Directions
Peng Yan
Ahmed Abdulkadir
Paul-Philipp Luley
Matthias Rosenthal
Gerrit A. Schatte
Benjamin Grewe
Thilo Stadelmann
AI4TS
36
57
0
11 Jul 2023
Imbalanced Aircraft Data Anomaly Detection
Hao Yang
Junyuan Gao
Yuan. Yuan
Xuelong Li
AI4TS
19
4
0
17 May 2023
DEGAN: Time Series Anomaly Detection using Generative Adversarial Network Discriminators and Density Estimation
Yueyang Gu
F. Jazizadeh
AI4TS
18
0
0
05 Oct 2022
Efficient Non-Compression Auto-Encoder for Driving Noise-based Road Surface Anomaly Detection
Yeonghyeon Park
JongHee Jung
27
4
0
22 Nov 2021
Real-World Anomaly Detection by using Digital Twin Systems and Weakly-Supervised Learning
Andrea Castellani
Sebastian Schmitt
S. Squartini
9
110
0
12 Nov 2020
Oversampling Adversarial Network for Class-Imbalanced Fault Diagnosis
Masoumeh Zareapoor
Pourya Shamsolmoali
Jie Yang
38
98
0
07 Aug 2020
1