Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.12370
Cited By
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
29 March 2019
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"
26 / 26 papers shown
Title
Discrete Neural Flow Samplers with Locally Equivariant Transformer
Zijing Ou
Ruixiang Zhang
Yingzhen Li
52
0
0
23 May 2025
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
84
0
0
03 Feb 2025
Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations
Xin-Chao Xu
Yi Qin
Lu Mi
Hao Wang
Xuelong Li
101
12
0
03 Jan 2025
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
79
212
0
22 Apr 2019
Implicit Generation and Generalization in Energy-Based Models
Yilun Du
Igor Mordatch
BDL
DiffM
55
40
0
20 Mar 2019
Maximum Entropy Generators for Energy-Based Models
Rithesh Kumar
Sherjil Ozair
Anirudh Goyal
Aaron Courville
Yoshua Bengio
44
113
0
24 Jan 2019
Divergence Triangle for Joint Training of Generator Model, Energy-based Model, and Inference Model
Tian Han
Erik Nijkamp
Xiaolin Fang
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
67
68
0
28 Dec 2018
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
135
1,438
0
22 Jun 2018
Learning Descriptor Networks for 3D Shape Synthesis and Analysis
Jianwen Xie
Zilong Zheng
Ruiqi Gao
Wenguan Wang
Song-Chun Zhu
Ying Nian Wu
GAN
3DV
61
145
0
02 Apr 2018
Building a Telescope to Look Into High-Dimensional Image Spaces
Mitch Hill
Erik Nijkamp
Song-Chun Zhu
DiffM
52
10
0
02 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,437
0
16 Feb 2018
Wasserstein Introspective Neural Networks
Kwonjoon Lee
Weijian Xu
Fan Fan
Zhuowen Tu
70
57
0
24 Nov 2017
Non-local Neural Networks
Xinyu Wang
Ross B. Girshick
Abhinav Gupta
Kaiming He
OffRL
283
8,905
0
21 Nov 2017
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
119
55
0
07 Nov 2017
Learning Energy-Based Models as Generative ConvNets via Multi-grid Modeling and Sampling
Ruiqi Gao
Yang Lu
Junpei Zhou
Song-Chun Zhu
Ying Nian Wu
74
79
0
26 Sep 2017
Calibrating Energy-based Generative Adversarial Networks
Zihang Dai
Amjad Almahairi
Philip Bachman
Eduard H. Hovy
Aaron Courville
GAN
53
111
0
06 Feb 2017
Cooperative Training of Descriptor and Generator Networks
Jianwen Xie
Yang Lu
Ruiqi Gao
Song-Chun Zhu
Ying Nian Wu
GAN
55
143
0
29 Sep 2016
Deep Directed Generative Models with Energy-Based Probability Estimation
Taesup Kim
Yoshua Bengio
GAN
45
136
0
10 Jun 2016
The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
81
5
0
30 May 2016
A Theory of Generative ConvNet
Jianwen Xie
Yang Lu
Song-Chun Zhu
Ying Nian Wu
DiffM
GAN
86
320
0
10 Feb 2016
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
68
534
0
07 Dec 2015
Learning FRAME Models Using CNN Filters
Yang Lu
Song-Chun Zhu
Ying Nian Wu
GAN
51
66
0
28 Sep 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Generative Modeling of Convolutional Neural Networks
Jifeng Dai
Ying Nian Wu
Ying-Nian Wu
58
75
0
19 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
106
908
0
17 Feb 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
447
16,940
0
20 Dec 2013
1