ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.11835
  4. Cited By
A Survey on Graph Kernels

A Survey on Graph Kernels

28 March 2019
Nils M. Kriege
Fredrik D. Johansson
Christopher Morris
ArXivPDFHTML

Papers citing "A Survey on Graph Kernels"

50 / 59 papers shown
Title
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Xizhuo
Zhang
AI4CE
29
0
0
26 Apr 2025
Tempo: Application-aware LLM Serving with Mixed SLO Requirements
Tempo: Application-aware LLM Serving with Mixed SLO Requirements
Wei Zhang
Zhiyu Wu
Yi Mu
Banruo Liu
Myungjin Lee
Fan Lai
58
0
0
24 Apr 2025
Learning signals defined on graphs with optimal transport and Gaussian process regression
Learning signals defined on graphs with optimal transport and Gaussian process regression
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
41
1
0
21 Oct 2024
Descriptive Kernel Convolution Network with Improved Random Walk Kernel
Descriptive Kernel Convolution Network with Improved Random Walk Kernel
Meng-Chieh Lee
Lingxiao Zhao
Leman Akoglu
23
3
0
08 Feb 2024
Explaining the Power of Topological Data Analysis in Graph Machine
  Learning
Explaining the Power of Topological Data Analysis in Graph Machine Learning
Funmilola Mary Taiwo
Umar Islambekov
Cüneyt Gürcan Akçora
AI4CE
42
3
0
08 Jan 2024
Multiparameter Persistent Homology for Molecular Property Prediction
Multiparameter Persistent Homology for Molecular Property Prediction
Andac Demir
B. Kiziltan
27
1
0
17 Nov 2023
CktGNN: Circuit Graph Neural Network for Electronic Design Automation
CktGNN: Circuit Graph Neural Network for Electronic Design Automation
Zehao Dong
Weidong Cao
Muhan Zhang
Dacheng Tao
Yixin Chen
Xuan Zhang
GNN
34
30
0
31 Aug 2023
A Survey of Graph Unlearning
A Survey of Graph Unlearning
Anwar Said
Tyler Derr
Mudassir Shabbir
W. Abbas
X. Koutsoukos
MU
28
7
0
23 Aug 2023
Modeling Edge Features with Deep Bayesian Graph Networks
Modeling Edge Features with Deep Bayesian Graph Networks
Daniele Atzeni
Federico Errica
D. Bacciu
Alessio Micheli
21
6
0
17 Aug 2023
Expectation-Complete Graph Representations with Homomorphisms
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
18
6
0
09 Jun 2023
Strengthening structural baselines for graph classification using Local
  Topological Profile
Strengthening structural baselines for graph classification using Local Topological Profile
J. Adamczyk
Wojciech Czech
30
3
0
01 May 2023
A Comprehensive Survey on Deep Graph Representation Learning
A Comprehensive Survey on Deep Graph Representation Learning
Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
...
Jingyang Yuan
Yusheng Zhao
Yifan Wang
Xiao Luo
Ming Zhang
GNN
AI4TS
54
141
0
11 Apr 2023
Deep Orthogonal Hypersphere Compression for Anomaly Detection
Deep Orthogonal Hypersphere Compression for Anomaly Detection
Yunhe Zhang
Yan Sun
Jinyu Cai
Jicong Fan
38
10
0
13 Feb 2023
Unsupervised Neighborhood Propagation Kernel Layers for Semi-supervised
  Node Classification
Unsupervised Neighborhood Propagation Kernel Layers for Semi-supervised Node Classification
Sonny Achten
F. Tonin
Panagiotis Patrinos
Johan A. K. Suykens
45
4
0
31 Jan 2023
Kernelized Cumulants: Beyond Kernel Mean Embeddings
Kernelized Cumulants: Beyond Kernel Mean Embeddings
Patric Bonnier
Harald Oberhauser
Zoltan Szabo
33
5
0
29 Jan 2023
ToDD: Topological Compound Fingerprinting in Computer-Aided Drug
  Discovery
ToDD: Topological Compound Fingerprinting in Computer-Aided Drug Discovery
Andac Demir
Baris Coskunuzer
I. Segovia-Dominguez
Yuzhou Chen
Yulia R. Gel
B. Kiziltan
18
16
0
07 Nov 2022
Isotropic Gaussian Processes on Finite Spaces of Graphs
Isotropic Gaussian Processes on Finite Spaces of Graphs
Viacheslav Borovitskiy
Mohammad Reza Karimi
Vignesh Ram Somnath
Andreas Krause
35
7
0
03 Nov 2022
On RKHS Choices for Assessing Graph Generators via Kernel Stein
  Statistics
On RKHS Choices for Assessing Graph Generators via Kernel Stein Statistics
Moritz Weckbecker
Wenkai Xu
Gesine Reinert
55
3
0
11 Oct 2022
Metric Distribution to Vector: Constructing Data Representation via
  Broad-Scale Discrepancies
Metric Distribution to Vector: Constructing Data Representation via Broad-Scale Discrepancies
Xue Liu
Dan Sun
X. Cao
Hao Ye
Wei Wei
20
0
0
02 Oct 2022
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Franka Bause
Nils M. Kriege
CLL
34
6
0
19 Sep 2022
A Gaze into the Internal Logic of Graph Neural Networks, with Logic
A Gaze into the Internal Logic of Graph Neural Networks, with Logic
Paul Tarau
NAI
21
2
0
05 Aug 2022
Metric Based Few-Shot Graph Classification
Metric Based Few-Shot Graph Classification
Donato Crisostomi
Simone Antonelli
Valentino Maiorca
Luca Moschella
R. Marin
Emanuele Rodolà
32
5
0
08 Jun 2022
Shortest Path Networks for Graph Property Prediction
Shortest Path Networks for Graph Property Prediction
Ralph Abboud
Radoslav Dimitrov
.Ismail .Ilkan Ceylan
GNN
27
45
0
02 Jun 2022
Graph-level Neural Networks: Current Progress and Future Directions
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Jia Wu
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
46
0
0
31 May 2022
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
Nils M. Kriege
16
15
0
22 May 2022
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
  Analysis
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Maciej Besta
Torsten Hoefler
GNN
34
56
0
19 May 2022
GraphHD: Efficient graph classification using hyperdimensional computing
GraphHD: Efficient graph classification using hyperdimensional computing
Igor O. Nunes
Mike Heddes
T. Givargis
Alexandru Nicolau
A. Veidenbaum
28
52
0
16 May 2022
High Performance of Gradient Boosting in Binding Affinity Prediction
High Performance of Gradient Boosting in Binding Affinity Prediction
Dmitrii Gavrilev
Nurlybek Amangeldiuly
Sergei Ivanov
Evgeny Burnaev
AI4CE
33
2
0
14 May 2022
Graph similarity learning for change-point detection in dynamic networks
Graph similarity learning for change-point detection in dynamic networks
Déborah Sulem
Henry Kenlay
Mihai Cucuringu
Xiaowen Dong
38
14
0
29 Mar 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
50
40
0
25 Mar 2022
Mental State Classification Using Multi-graph Features
Mental State Classification Using Multi-graph Features
Guodong Chen
Hayden S. Helm
Kate Lytvynets
Weiwei Yang
Carey E. Priebe
26
8
0
25 Feb 2022
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
Rémi Flamary
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
33
19
0
08 Feb 2022
Bootstrapping Informative Graph Augmentation via A Meta Learning
  Approach
Bootstrapping Informative Graph Augmentation via A Meta Learning Approach
Hang Gao
Jiangmeng Li
Jingyao Wang
Hui Xiong
Gang Hua
Changwen Zheng
21
11
0
11 Jan 2022
Graph Filtration Kernels
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
24
12
0
22 Oct 2021
Fast Attributed Graph Embedding via Density of States
Fast Attributed Graph Embedding via Density of States
Saurabh Sawlani
Lingxiao Zhao
Leman Akoglu
OOD
16
7
0
11 Oct 2021
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
35
23
0
06 Oct 2021
Heat diffusion distance processes: a statistically founded method to
  analyze graph data sets
Heat diffusion distance processes: a statistically founded method to analyze graph data sets
E. Lasalle
13
0
0
27 Sep 2021
Multiple Kernel Representation Learning on Networks
Multiple Kernel Representation Learning on Networks
Abdulkadir Çelikkanat
Yanning Shen
Fragkiskos D. Malliaros
13
5
0
09 Jun 2021
Size-Invariant Graph Representations for Graph Classification
  Extrapolations
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
35
108
0
08 Mar 2021
Topological Graph Neural Networks
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
SUGAR: Subgraph Neural Network with Reinforcement Pooling and
  Self-Supervised Mutual Information Mechanism
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism
Qingyun Sun
Jianxin Li
Hao Peng
Jia Wu
Yuanxing Ning
Phillip S. Yu
Lifang He
24
162
0
20 Jan 2021
LCS Graph Kernel Based on Wasserstein Distance in Longest Common
  Subsequence Metric Space
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
23
19
0
07 Dec 2020
Graph Kernels: State-of-the-Art and Future Challenges
Graph Kernels: State-of-the-Art and Future Challenges
Karsten M. Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Alexander Rieck
AI4TS
31
102
0
07 Nov 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
GraphCrop: Subgraph Cropping for Graph Classification
GraphCrop: Subgraph Cropping for Graph Classification
Yiwei Wang
Wei Wang
Keli Zhang
Yujun Cai
Bryan Hooi
22
57
0
22 Sep 2020
Transfer Learning of Graph Neural Networks with Ego-graph Information
  Maximization
Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization
Qi Zhu
Carl Yang
Yidan Xu
Haonan Wang
Chao Zhang
Jiawei Han
42
117
0
11 Sep 2020
Walk Extraction Strategies for Node Embeddings with RDF2Vec in Knowledge
  Graphs
Walk Extraction Strategies for Node Embeddings with RDF2Vec in Knowledge Graphs
Gilles Vandewiele
Bram Steenwinckel
P. Bonte
Michael Weyns
Heiko Paulheim
Petar Ristoski
F. Turck
F. Ongenae
18
17
0
09 Sep 2020
A Novel Higher-order Weisfeiler-Lehman Graph Convolution
A Novel Higher-order Weisfeiler-Lehman Graph Convolution
C. Damke
Vitali M. Melnikov
Eyke Hüllermeier
GNN
6
14
0
01 Jul 2020
Global Attention Improves Graph Networks Generalization
Global Attention Improves Graph Networks Generalization
Omri Puny
Heli Ben-Hamu
Y. Lipman
27
22
0
14 Jun 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
22
285
0
07 May 2020
12
Next