Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.11359
Cited By
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
27 March 2019
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks"
30 / 30 papers shown
Title
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
139
37
0
29 Apr 2023
A randomized gradient-free attack on ReLU networks
Francesco Croce
Matthias Hein
AAML
64
21
0
28 Nov 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
66
83
0
29 Oct 2018
Provable Robustness of ReLU networks via Maximization of Linear Regions
Francesco Croce
Maksym Andriushchenko
Matthias Hein
72
166
0
17 Oct 2018
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
76
448
0
31 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
60
370
0
23 May 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
102
694
0
25 Apr 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,185
0
01 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
105
968
0
29 Jan 2018
Adversarial Examples: Attacks and Defenses for Deep Learning
Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
SILM
AAML
88
1,622
0
19 Dec 2017
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
65
1,345
0
12 Dec 2017
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
75
117
0
20 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
123
1,501
0
02 Nov 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
63
283
0
13 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,063
0
19 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
110
511
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
121
1,857
0
20 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
315
1,867
0
03 Feb 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
67
239
0
19 Dec 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
140
1,737
0
08 Nov 2016
Understanding Deep Neural Networks with Rectified Linear Units
R. Arora
A. Basu
Poorya Mianjy
Anirbit Mukherjee
PINN
146
641
0
04 Nov 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
772
36,794
0
25 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
261
8,552
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,895
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
92
3,072
0
14 Nov 2015
Learning with a Strong Adversary
Ruitong Huang
Bing Xu
Dale Schuurmans
Csaba Szepesvári
AAML
77
358
0
10 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
1