ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.10427
  4. Cited By
Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context
  Aggregation

Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation

25 March 2019
Jaime Spencer
Richard Bowden
Simon Hadfield
ArXivPDFHTML

Papers citing "Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation"

4 / 4 papers shown
Title
Medusa: Universal Feature Learning via Attentional Multitasking
Medusa: Universal Feature Learning via Attentional Multitasking
Jaime Spencer
Richard Bowden
Simon Hadfield
CLL
30
1
0
12 Apr 2022
Revisiting Domain Generalized Stereo Matching Networks from a Feature
  Consistency Perspective
Revisiting Domain Generalized Stereo Matching Networks from a Feature Consistency Perspective
Jiawei Zhang
Xiang Wang
Xiao Bai
Chen Wang
Lei Huang
Yimin Chen
Lin Gu
Jun Zhou
Tatsuya Harada
Edwin R. Hancock
24
55
0
21 Mar 2022
Same Features, Different Day: Weakly Supervised Feature Learning for
  Seasonal Invariance
Same Features, Different Day: Weakly Supervised Feature Learning for Seasonal Invariance
Jaime Spencer
Richard Bowden
Simon Hadfield
BDL
20
16
0
30 Mar 2020
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D
  Cameras
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras
Raul Mur-Artal
Juan D. Tardós
204
5,375
0
20 Oct 2016
1