ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.10297
9
9

AdaCoSeg: Adaptive Shape Co-Segmentation with Group Consistency Loss

25 March 2019
Chenyang Zhu
Kai Xu
S. Chaudhuri
L. Yi
Leonidas J. Guibas
Hao Zhang
    3DPC
ArXivPDFHTML
Abstract

We introduce AdaCoSeg, a deep neural network architecture for adaptive co-segmentation of a set of 3D shapes represented as point clouds. Differently from the familiar single-instance segmentation problem, co-segmentation is intrinsically contextual: how a shape is segmented can vary depending on the set it is in. Hence, our network features an adaptive learning module to produce a consistent shape segmentation which adapts to a set. Specifically, given an input set of unsegmented shapes, we first employ an offline pre-trained part prior network to propose per-shape parts. Then, the co-segmentation network iteratively and} jointly optimizes the part labelings across the set subjected to a novel group consistency loss defined by matrix ranks. While the part prior network can be trained with noisy and inconsistently segmented shapes, the final output of AdaCoSeg is a consistent part labeling for the input set, with each shape segmented into up to (a user-specified) K parts. Overall, our method is weakly supervised, producing segmentations tailored to the test set, without consistent ground-truth segmentations. We show qualitative and quantitative results from AdaCoSeg and evaluate it via ablation studies and comparisons to state-of-the-art co-segmentation methods.

View on arXiv
Comments on this paper