ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.08778
  4. Cited By
Provable Certificates for Adversarial Examples: Fitting a Ball in the
  Union of Polytopes

Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes

20 March 2019
Matt Jordan
Justin Lewis
A. Dimakis
    AAML
ArXivPDFHTML

Papers citing "Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes"

18 / 18 papers shown
Title
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
96
0
0
06 Feb 2025
Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision
Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision
Arturs Berzins
27
5
0
12 Jun 2023
When Deep Learning Meets Polyhedral Theory: A Survey
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
33
0
29 Apr 2023
SplineCam: Exact Visualization and Characterization of Deep Network
  Geometry and Decision Boundaries
SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision Boundaries
Ahmed Imtiaz Humayun
Randall Balestriero
Guha Balakrishnan
Richard Baraniuk
26
17
0
24 Feb 2023
Verifying Attention Robustness of Deep Neural Networks against Semantic
  Perturbations
Verifying Attention Robustness of Deep Neural Networks against Semantic Perturbations
S. Munakata
Caterina Urban
Haruki Yokoyama
Koji Yamamoto
Kazuki Munakata
AAML
17
4
0
13 Jul 2022
Faithful Explanations for Deep Graph Models
Faithful Explanations for Deep Graph Models
Zifan Wang
Yuhang Yao
Chaoran Zhang
Han Zhang
Youjie Kang
Carlee Joe-Wong
Matt Fredrikson
Anupam Datta
FAtt
24
2
0
24 May 2022
A Survey of Robust Adversarial Training in Pattern Recognition:
  Fundamental, Theory, and Methodologies
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
54
72
0
26 Mar 2022
Provable Lipschitz Certification for Generative Models
Provable Lipschitz Certification for Generative Models
Matt Jordan
A. Dimakis
22
14
0
06 Jul 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Globally-Robust Neural Networks
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at
  Reliable OOD Detection
Know Your Limits: Uncertainty Estimation with ReLU Classifiers Fails at Reliable OOD Detection
Dennis Ulmer
Giovanni Cina
OODD
35
31
0
09 Dec 2020
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
ReLU Code Space: A Basis for Rating Network Quality Besides Accuracy
ReLU Code Space: A Basis for Rating Network Quality Besides Accuracy
Natalia Shepeleva
Werner Zellinger
Michal Lewandowski
Bernhard A. Moser
25
3
0
20 May 2020
Black-Box Certification with Randomized Smoothing: A Functional
  Optimization Based Framework
Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework
Dinghuai Zhang
Mao Ye
Chengyue Gong
Zhanxing Zhu
Qiang Liu
AAML
24
62
0
21 Feb 2020
Robustness for Non-Parametric Classification: A Generic Attack and
  Defense
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
34
42
0
07 Jun 2019
Why ReLU networks yield high-confidence predictions far away from the
  training data and how to mitigate the problem
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
55
553
0
13 Dec 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,113
0
04 Nov 2016
1