Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.08619
Cited By
The importance of better models in stochastic optimization
20 March 2019
Hilal Asi
John C. Duchi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The importance of better models in stochastic optimization"
12 / 12 papers shown
Title
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
26
57
0
08 Feb 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
34
2
0
09 Jan 2023
Learning distributed channel access policies for networked estimation: data-driven optimization in the mean-field regime
M. Vasconcelos
24
0
0
10 Dec 2021
Stability and Convergence of Stochastic Gradient Clipping: Beyond Lipschitz Continuity and Smoothness
Vien V. Mai
M. Johansson
31
38
0
12 Feb 2021
Global Convergence of Model Function Based Bregman Proximal Minimization Algorithms
Mahesh Chandra Mukkamala
M. Fadili
Peter Ochs
22
8
0
24 Dec 2020
Near Instance-Optimality in Differential Privacy
Hilal Asi
John C. Duchi
26
38
0
16 May 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Second-order Conditional Gradient Sliding
Alejandro Carderera
Sebastian Pokutta
19
12
0
20 Feb 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
16
29
0
18 Jan 2020
Protection Against Reconstruction and Its Applications in Private Federated Learning
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
18
357
0
03 Dec 2018
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
1