ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.07903
  4. Cited By
NeuralHydrology -- Interpreting LSTMs in Hydrology

NeuralHydrology -- Interpreting LSTMs in Hydrology

19 March 2019
Frederik Kratzert
M. Herrnegger
D. Klotz
Sepp Hochreiter
Günter Klambauer
ArXivPDFHTML

Papers citing "NeuralHydrology -- Interpreting LSTMs in Hydrology"

8 / 8 papers shown
Title
Explainable AI for Time Series via Virtual Inspection Layers
Explainable AI for Time Series via Virtual Inspection Layers
Johanna Vielhaben
Sebastian Lapuschkin
G. Montavon
Wojciech Samek
XAI
AI4TS
34
26
0
11 Mar 2023
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
52
18
0
30 Dec 2022
Few-Shot Learning by Dimensionality Reduction in Gradient Space
Few-Shot Learning by Dimensionality Reduction in Gradient Space
M. Gauch
M. Beck
Thomas Adler
D. Kotsur
Stefan Fiel
...
Markus Holzleitner
Werner Zellinger
D. Klotz
Sepp Hochreiter
Sebastian Lehner
48
9
0
07 Jun 2022
Toward Explainable AI for Regression Models
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
36
63
0
21 Dec 2021
Capabilities of Deep Learning Models on Learning Physical Relationships:
  Case of Rainfall-Runoff Modeling with LSTM
Capabilities of Deep Learning Models on Learning Physical Relationships: Case of Rainfall-Runoff Modeling with LSTM
Kazuki Yokoo
K. Ishida
A. Ercan
T. Tu
T. Nagasato
M. Kiyama
Motoki Amagasaki
18
33
0
15 Jun 2021
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Enhancing streamflow forecast and extracting insights using long-short
  term memory networks with data integration at continental scales
Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales
D. Feng
K. Fang
Chaopeng Shen
AI4TS
28
274
0
18 Dec 2019
Towards Learning Universal, Regional, and Local Hydrological Behaviors
  via Machine-Learning Applied to Large-Sample Datasets
Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine-Learning Applied to Large-Sample Datasets
Frederik Kratzert
D. Klotz
Guy Shalev
Günter Klambauer
Sepp Hochreiter
G. Nearing
22
547
0
19 Jul 2019
1